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Mapping molecular models to continuum theories for partially miscible fluids
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We map molecular dynamics simulations of fluid-fluid interfaces onto mesoscale continuum theories for
partially miscible fluids. Unlike most previous work, we examine not only the interface order parameter and
density profiles, but also the stress. This allows a complete mapping from the length scales of molecular
dynamics simulations onto a mesoscale model suitable for a lattice Boltzmann or other mesoscale simulation
method. Typical assumptions of mesoscale models, such as incompressibility, are found to fail at the interface,
and this has a significant impact on the surface tension. Spurious velocities, found in a number of discrete
models of curved interfaces, are found to be minimized when the parameters of the mesoscopic model are
made consistent with molecular dynamics results. An improved mesoscale model is given and demonstrated to
produce results consistent with molecular dynamics simulations for interfaces with widths down to near
molecular size.
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[. INTRODUCTION Some of the unexpected consequences of these choices are
discussed in Sec. VI. Our aim in this paper is to remove the

Mesoscale continuum models are becoming increasinglyncertainty in parameter choice by providing a complete de-
popular for studies of complex fluid4,2]. Rather than using scription of a simple fluid model. This should then serve as a
a constitutive equation for the local stress based purely oguide for constructing molecularly based models of more
some function of strain, these models incorporate a depercomplex fluids.
dence on the internal microstructure by including the evolu- We examine a binary mixture of simple fluids. The time
tion of a local order parameter. They have met with succesand distance scales involved in the hydrodynamic flow and
in describing bulk properties of some materials, such agliffusion of such fluids are accessible to molecular dynamics
shear thinning in liquid crystals3], shear banding flowigt],  simulations. This allows us to map out the parameters of the
and phase ordering in binary fluifi§]. However, their treat- mesoscopic model from the molecular simulations. In addi-
ment of interfacial stresses has not been tested for consision, we can test this mapping by comparing its predictions
tency with large scale molecular simulations. This is an im-to simulations for a range of situations not explicitly used in
portant omission since the detailed interfacial behavior camhe fits. As methods to map parameters from microscopic to
have a dramatic influence on macroscopic flows. macroscopic models are not well established, we feel it is

One example where molecular scale interfacial propertiegssential to use simple models that allow extensive testing of
are important is in pinchoff of fluid drops. In cases where athe mapping.
fluid drop breaks up due to some external force, there can be The final mesoscale model matches changes in the local
a cascade of instabilities down to microscopic length scalestress, as well as order parameter and density profiles,
[6]. How such instabilities are cut off is a question of activethrough interfaces in the system. Nonlocal terms in the free
research 7] with practical applications to coatings of micro- energy, in this case gradients of order parameter and density,
particles[8]. Another example is dynamic wettiig]. When  are essential for reproducing the observed microscopic stress
a liquid-liquid interface intersects a stationary solid boundaryat interfaces. The results show that many common assump-
it makes a well-defined angle with the solid known as thetions are invalid. For example, many models neglect density
contact angle. When the solid is moving, thenamiccontact  variations because the bulk fluids are essentially incompress-
angle 44 is a function of the wall velocity. There is signifi- ible. Despite this, we find that density variations at the inter-
cant interest in reproducing this velocity dependence withirface still have a significant effect on the interfacial tension.
mesoscopic modelsl0]. However, 64 is affected by details Perhaps more surprising is that some of the elastic constants
of the fluid-fluid interface and the solid-fluid interface that multiplying gradient terms are negative: The system is stabi-
are currently unknown. Quantitatively reproducing these eflized by atomic discreteness at short scales.
fects requires a detailed examination of the microscopic In the following section we outline our molecular and
structure of the interfaces near the contact point and how thisyxesoscale models, along with the methods we use to simu-
information can be mapped to the scale of continuum modelkate them. In Sec. Il we describe the molecular dynamics
[11]. characterization of both the bulk phases and interfaces of the

The difficulty in selecting an appropriate mesoscalebinary fluid. Fits to various free energy functionals are de-
model is that the number of parameters in the model is ususcribed in Sec. IV. A comparison to some simulations of
ally much larger than the number of macroscopic propertiesituations not used in the fitting procedure is given in Sec. V.
that are fit. In the absence of complete information, researchA/e conclude with a summary and discussion of implications
ers are led to pick parameters primarily for conveniencefor further work.
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FIG. 2. A liquid-liquid interface between Lennard-Jones fluids
0 D at densityp=0.85m/¢>. System size id ,=74.360 andL,=L,
=16.10, and there are periodic boundary conditions in all three
(@ (d) directions. The temperature kgT/e=1.1 ande* =5.
T X 0 soscopic models with a continuously varying order param-
eter. While not obvious priori, we find that there is a sig-
* nificant range of parameters where mean-field theory can be
used. The constraints would be even more relaxed in a poly-
o o mer mixture where, due to the polymer length, the interfaces

are broader and the system is more mean-field-like. How-

FIG. 1. Schematic slices through the phase diagrafa)aton-  ever, the convective-diffusive hydrodynamics of polymer

stant temperatureg) constante*, (c) constante* and p, and (d) molecules of any significant length are currently inaccessible
constanfT and €*. In (c) and (d) the horizontal lines tie coexisting to molecular dynamics time scales.

phases andt marks a critical point. Periodic boundary conditions are applied in all three di-
rections of the simulation cell. In systems with interfaces, we
Il. SIMULATIONS AND MODELS take the period in the& directionL, to be three to six times

larger than the periods in the other directions, which are

usually equal. Most results are reported for systems with
As we wish to explore a wide range of static and dynamic16 384 molecules that are roughly evenly divided between

properties in our model, it is essential that it is kept relativelytype 1 and type 2. The total mean density was varied be-

simple. We will use a model similar to that used by a numberween p=0.83m/o° and p=0.925m/c3. For the system

of researchers to examine critical properties of fluid mixtureswith p=0.85m/ o, the system size wds,=L,=16.1o and

[12], capillary waved13], and interfacial slif14—-16. The | =74.36r. A typical system configuration is shown in Fig.
model consists of a mixture of two types of molecules, la-2.

A. Molecular scale model

beled 1 and 2. The interactions between atoms of tygred The simulations were performed using a variant of
i sgparated by a distancare mpdeled using a truncated and LAMMPS from Sandia National Laboratoridd 7], which
shifted Lennard-Jones potential, uses spatial decomposition to parallelize the calculations and

determine neighbor lists. The equations of motion are inte-
grated using the velocity-Verlet algorithih8]. The time step
dt=0.007r, where r=o(m/€)¥? is the characteristic
wheree;; specifies the interaction energy, amdhe interac-  Lennard-Jones time scale. To contiiglthe motion in they

tion length. The potential is truncated at the minimum of thedirection is coupled to a Langevin thermos&8,19. This
potentialr .= 2®s to improve computational efficiency. As direction was chosen because it is always perpendicular to
a result, the interactions are strictly repulsive. For simplicity,any interfaces in the system. However, for the equilibrium
all molecules have the same massTwo molecules of the situations considered here, applying the thermostat in all
same type interact with the energy scalg=e,,=€¢. An  three directions produces equivalent results. The drag term in
extra repulsion is added between unlike molecules, the thermostat has a damping rate of 0.5 This corre-

Vij(r)=4e;[(alr)2=(alr)°+1/4], (1)

= €= €(1+€*), to control miscibility. sponds to underdamped motion so that even inytl&ec-
The degree of phase separation is quantified by the ordeion the motion is dominated by inertia.
parameter = p; — p,, wherep, andp, are the local densi- To speed up the equilibration time, we supplement the

ties of species 1 and 2. Schematics of the phase diagram asrlecular dynamics moves with a Monte Carlo procedure.
function of densityp, temperaturdl, and miscibility param- Every 500 steps, molecules are relabdfeom 1 to 2 or vice
etere* are shown in Fig. 1. For sufficiently high densities theversa according to the Metropolis transition rule. This is a
two fluids change from completely miscible to completely procedure first used for lattice simulatiori?] and later ex-
immiscible ase* increaseqFig. 1(@)] or T decrease$Fig.  tended to molecular dynamics simulations of polymer mix-
1(b)]. For sufficiently highe* one can observe coexistence of tures[13]. After equilibration, the Monte Carlo routines are
two partially miscible states by adjusting the temperature oturned off. Typically, we run the simulation for>510°dt
density[Figs. 1c) and 1d)]. with the Monte Carlo routines turned on. We wait a further
The object is to map the molecular model to a continuumb x 10°dt to ensure that any convective flow caused by the
mean-field theory. Thus, we wish to avoid close proximity torelaxation of the initialnonequilibrium state has died away.
a critical point where the behavior is dominated by largeData are then collected and averaged over the neit10
scale fluctuations. However, if one is too far from the critical The local pressure tensor in a molecular dynamics simu-
point the interface may be too sharp to be described by mdation has the following fornj18]:
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Pos()=(pv 0 g)(r)— >

.y functional theories based on a weighted density approxima-
i,j>i

r . L2
tion can reproduce the qualitative shape of order parameter

<rija AVij ) A number of mesoscale theories are available. Density
——f drgo(r—r’)
1 ar J CI]
and density profiles through static interfaces, although the
=(pv )N+ > <fijaJ dr'ﬁ5(f—r’)>. (20 stress profile does not appear to have been sti@iéd26.
b= Ci However this approach is computationally challenging be-
cause it requires the use of integrodifferential equations. Our
where(---) denotes a thermal averagg; is a contour join- interest is in models that are easily generalized to nonequi-
ing atomsi andj separated by the vectar;, and Greek librium situations so we restrict ourselves to the simplest
indices indicate components along they, andz directions.  method of including spatial variations, namely one involving
In what follows, we adopt the summation convention forderivatives of the local densities. Implementations of such
repeated indices. An apparent ambiguity in E®) arises theories come under many names in the literature. Two of the
from the fact thany contour would appear to be acceptable, M0ost common are lattice Boltzmann simulatigis27] and
in that it satisfies microscopic momentum balance. Howevediffuse interface hydrodynamidg].
requiring the microscopic stress to conform to the symmetry To lowest order in gradients of the total densitand the
and transformation properties obeyed by the macroscopierder parameted, the free energy functional can be written
stress makes the contour choice unique. The appropriate cofiS
tour is just the straight line between the two atoms, a choice
originally proposed by Irving and Kirkwoof20]. This is F= kBTJ dr
true whether or not you impose the additional requirements
on the scale of the averages in H) [20,21] or on the
corresponding microscopic instantaneous many-body vari- +Kp¢Vp~V(D], (3)
able inside the averaggg2].

Calculating and binning the stress to get local information

can be computationally intensive, as it needs to be done fof/hereT is the temperaturekg is Bolizmann's constant, and
every force pair in the system. According to E®), the the local bulk free energys and elastic constants may be

stress associated with each pair should be partitioned in prddnctions ofp, @, andT. If the two phases have the same
portion to the fraction of the line interval between them thatdensity and elastic constantssymmetric” case, then the

lies in each spatial bin. Because this is geometrically and’®€ €nergy density must be an even functiondaf This
computationally challenging, the stress contribution of a'€duiresk,q to be identically zero or an odd function @£,
given force pair is usually assigned instead to the end point¥1aPpings of the elastic constants used here to those of a few
of the contour line joining them. As noted by several author’ther common parametrizations of the free energy are given
[23], this can lead to artificial variations in the stress nearf" Appendix A. _

interfaces. While this does not affect the total surface ten- Conservation of the numbevt; of particles of each type
sion, it does affect the local stress anisotropies that we corfPOSes the constraints

sider below(e.g., Fig. 10. We developed a different method

that efficiently approximates Ed2). The contour line de- M+ Mzzf dr p, (4
fined by rj; is divided inton discrete segments of equal

length, each carrying a fractionriLbf the force pair’s con-

tribution to the stress. This contribution is assigned to the _ _

spatial bin containing the center of the segment. We increase Ma=Mo= f dr . ®

n until the local stress converges, finding-4 is sufficient - ) o )

for the short range interactions considered here. In each caddus at equilibrium we wish to minimize the Lagrangian

we ensure that the component of the pressure tensor perpen-

dicular to fluid/fluid interfaces is constant, as required by L=F+pu kBT(MﬁMz—f dr p
conservation of momentum. We also find that calculating the P

stress more often than every fourth time step gives no no-

ticeable improvement in statistics. +/L<kaT(M1_M2_J dr q)), (6)

1 2 1 2
Ut 5KV )2+ 5K (VD)

B. Mesoscale model where 1, and uq are Lagrange multipliers, and theon-
stanj factors ofkgT are included for later convenience. The

Continuum hydrodynamics is based on conservation law. ; )
uler-Lagrange equations give

and the assumption of local equilibrium. The assumption o

local equilibrium requires the existence of a free energy den- I 9K

sity. Further, this free energy density must be expressible as a Bp=——— K,,Vzp— qu,VZcp — —"q’(qu)Z, (7)
functional of the density, temperaturdl, and order param- p oo

eter @. Once determined, this free energy density can be

used to calculate the stress tensor and chemical potential re- Y CKaV2h—K V2 8
quired in a full mesoscopic continuum theory. Ko=%g ~Ne p2V P ®
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In deriving Eq.(8) we have ignored terms arising from varia-
tions ofK, andKg, with p and®. Only the variation oK ,q, 09
with ® is retained as it must be an odd function®f The
equations obtained upon relaxing these assumptions and the g 08
justification for ignoring the extra terms that result are given @
in Appendix A. S 07
The Lagrangian densityg, o
c 1 1 06
—— =+ EKP(Vp)Z-f— EKLI,(V(P)Z

kgT 082 084 08 08 09 092

po'alm
+Kpil>vq)'vp_lu‘pp_lu‘®q)i (9)

FIG. 3. Portion of the coexistence curve #r=5 (x) ande* =6
does not contain any explicit dependence on spatial coordi-#). The solid line is a quadratic fit to the data and the dashed line
nates. As a result, Noether’'s Theor¢®8] can be used to is from a fit to Flory-Huggins theory described in Appendix C.
determine the pressure/stress terfiadt implies that conser-  Error bars are comparable to the symbol size.
vation of momentum takes the form

the second momeriB80]. Notes useful for the implementa-

V.P=0, (100 tion of the scheme are included in Appendix B.
The lattice Boltzmann scheme simulates the full dynami-
where cal equations of convective-diffusive hydrodynamics. These
include the continuity equation

As this is related to conservation of momentum, we can aswhereu is the fluid velocity and Greek indices indicate di-
sociateP with a nondissipative stress, or pressure tensortections. Conservation of momentum takes the form
SubstitutingC and the Euler-Lagrange equation foj, gives

PTs
Pag _ Po 1 , FupUa+ dppUUg= =P s+ —-d
keT KgT Oapt K| (dap)(dpp) — E(&Vp) Sup B
0
! 2 X 1_3$) 5aﬁa'yu7+ aauﬁ+aﬁua ’
Ko (3,2)(35P) = 5 (3,8)?8,5| + Ko (9,P) .

X(ﬁﬁp)_l_(aap)(aﬁcb)_(ay(b)(ﬁyp)aaﬁ]! (12)

where the hydrostatic pressupg (trace of%PaB) is

where the parametet; sets the viscosity. Finally, there is
the convection-diffusion equation

Po=keT(pp,+Pue—14), (13 G +3,PU, =T,

I'V2ugp—2a (90 P ” (16)
] B p aap||"

and the expressions farg, andu, are given in Eqs(7) and _ o _ .
(8). The relations for the pressure teny,; and the chemi- The second term on the right, describing a flow-induced dif-

cal potentialuq will allow a direct comparison between the fusion [31], is a common feature of lattice Boltzmann
molecular and mesoscopic scale. schemes and is usually negligibly small. We set the algorith-

mic time constantry to unity so thatl” is the diffusion con-
stant. Viscous stresses associated with velocity gradients are

_ _ not relevant here as all velocities are zero. However, we will
Mesoscale schemes, of which lattice Boltzmann a|gOmake use of these terms in future works.

rithms are an example, have proved very successful in simu-
lations of complex fluidg1]. Lattice Boltzmann algorithms
can be viewed as a slightly unusual discretization of the
equations of motion or as a lattice version of a simplified As seen in Fig. 1, there are a number of parameters which
Boltzmann equation. In the free energy implementationaffect the phasémixed or separatgdf the system. Much of
equilibrium properties of the fluid are naturally incorporatedthe interesting behavior in binary fluids occurs when two
into the algorithm using ideas from statistical mechanicgphases coexist, so we will work with systems near the coex-
[27]. As the systems discussed in this paper are translatioristence line. Coexisting phases have the s@raade*, butp

ally invariant in at least one dimension, a two-dimensionaland @ vary through the interface. Unless otherwise stated,
lattice Boltzmann algorithm will sufficB29]. We use a nine- simulations are performed &z T/e=1.1. The free energy
velocity model on a square lattice. Minor problems related tdfunctional, Eq.(3), is then determined from simulations at
Galilean invarianc§27] are removed via a correction term in € =5 and 6.

C. Lattice Boltzmann algorithm

Ill. MOLECULAR DYNAMICS MEASUREMENTS
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The location of the coexistence lire,,(p), a section of 70
which is shown in Fig. 3, can be easily found by varying the
average density and letting the system equilibfatprocess
we accelerate using the Monte Carlo routin€Bo obtain
further information about the free energy in the vicinity of an
equilibrium state, we first study the linear response of the
system to small perturbations. As we show in Sec. Il A, this
furnishes us with the second derivatives of the bulk free en-
ergy ¢ and the elastic constants in the equilibrium state. Sec-
tion 11l B considers interfacial behavior. The surface tension
is evaluated as a function @fandT, and the effect of cap-
illary waves on the measured interface shape is examined.

(@)

A. Linear response of equilibrium states

We begin with an equilibrated single-phase configuration
from a molecular dynamics simulation. Thus the “basis”
state has no gradients of any kind. We then add a small force

on atoms of typa, F;= 8,cos@X). The forces can be incor- 15+ _d
porated into the chemical potentials, E§), as
. 51+ 6, )
Ro=Ho™ 2gkq TS|n(qx)+O(5 )s
F 6 5 2

whereu, andug are given in Eq(8). If the 5; are small, we 0 5 5
expect a linear response. Then 4 6

p=po+ psSin(gx)+0(s%),
FIG. 4. Linear response coefficients as a function of wave vector
D =dy+ P ssin(qx)+0(52), (18)  squared. The slope of each linear(fihes) gives an elastic constant
and the intercept gives a second derivative/oT he temperature is
where pg and ®, represent the undisturbed state. PluggingkgT/e=1.1 ande* =6. Average density is 0.83¢), 0.85(x), 0.87
this into the previous equations and expanding about thém), or 0.9m/o* (A). Statistical error bars are comparable to sym-

equilibrium state gives bol sizes.
|
2 2
2 TR opad el 2akaT
Lpp LpCD Ps _ (9p p Ps _ qKp +O(52) (19)
Lo, Loa/\Ps/ | 42 5 2 ) D5/ | 8- 5, ’
Ipad Kped Preal Kad 2qkgT

where the derivatives are about the equilibrium state. Bydence of each term. We obtain results for giz simulta-
varying the §; and wave vectorg] we can determine the neously by applying perturbations at two differdand in-
second derivatives ofy and the elastic constants of the ~ commensurateq’s in each of thex, y, andz directions.
equilibrium state. The results folL can be seen in Fig. 4. The first thing to
To separate out thg dependence we use the following note is that the matrix elements are indeed linear functions of
technique. For a given we run two simulations, one with g2. This indicates that the square gradient theory, assumed in
8,= 6,=0.2 and another witl$; = — 5,=0.1. This gives us Eq. (8), is capable of describing this system even at wave-
four equations to determine the four elements of the coeffilengths as short as2A surprising result is that both,,, and
cient matrix(in reality, we have one extra equation due to theL ,q, have a negative slope, implying thit, andK ,q are
symmetry of the matrix This process must be repeated for aboth negative This means that the square gradient theory
number of differenty in order to separate out tteedepen- becomes unstable to fluctuations at short wavelengtisr)
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@) Sec. IV. We focus here on parametrizing the elastic constants
* because they are important in understanding the interfacial
tension results in the folowing section. Note that the varia-
tion of the K's with p and ® was ignored in the chemical
potentials of Eqs(7) and (8). Appendix A explains why the
variations discussed below can be ignored in these equations.
To separate thé and p dependence of the elastic con-
stants we must consider points off the coexistence line. In
, . principal this requires simulations on a two-dimensional
* ) grid. However, we find thaK , appears to depend only @n
while K, and Kq depend only on the scaled variable
$=®lp. This is illustrated by including a pointp
=0.831/0°3, ®=0.79n/03, in Fig. 6 that is away from the
coexistence line. This point collapses on the remaining data
whenK,, is plotted againsp andK g, andKg, are plotted
against¢. However, it lies far from the other data when the
elastic constants are plotted against the other variable, as
illustrated in the plot oKy vs p. Perhaps most surprising is
that the results for differen¢* also collapse in Figs. (),
6(b), and &d). Thus we can fit the data for the elastic con-
stants with one set of parameters.
Given the above results we take independent of and
fit it to a linear function ofp with the result given in Table I.
By symmetry, K, must be an odd function of. The
dashed line in Fig. @) corresponds to a fit of the data as-
suming K 4~ ¢ whereas the solid line is a fit assuming
K,,(I,~¢3. The cubic function yields a better fit, giving the
result listed in Table I. This suggests that the common prac-
tice of neglecting terms involving .4, is justified in situa-
FIG. 5. The second derivatives @f as a function of density tions where¢ is small, such as near the critical point, but is
along the coexistence line f0®) €* =6 and(x) " =5. Data points  Nnot justified in the more typical case considered here.
were obtained from the intercepts of the linear fits in Fig. 4. The Symmetry constrainK4 to be an even function ap. The
second derivatives of the parametrization/dir €* =6 (solid line) dotted line in Fig. 6d) comes from a fit 0K 4 to a quadratic
ande* =5 (dashed linggiven in Sec. IV and the Flory-Huggins free function of ¢. This clearly deviates systematically from the
energy fore* =6 (dotted ling discussed in Appendix C are also data which appear to be approaching a much flatter function
shown. of ¢ as¢—0. The solid and dashed lines, which both furnish
good fits over the range of data, correspond, respectively, to
where one of the eigenvalues bfcrosses zero. As this dis- the ¢® and ¢ fits given in Table 1. As we shall see in the
tance is comparable to the molecular separation, fluctuatiorfellowing section, the value oKy has a significant impact
on shorter scales are unphysical. However, this sets a haah interface properties. However, these properties are most
lower limit for the mesh spacing introduced in the lattice strongly dependent on the value &f;, around ¢=0. As
Boltzmann simulations. Using a mesh spacing shorter thasuch, the fact thaKg, is nearly constant in this region is a
the typical molecular separation to “improve accuracy” is highly desirable result. However, in order to have confidence
not only pointless, but will be unstab]&2]. in an extrapolation oKy from values of$>0.74 down to
It is also interesting to note that,, is considerably larger =0 requires that we examine the interfaces explicitly.
(five to ten timeg than the other components. This reflects
the fact that it is harder to create fluctuations in density than
fluctuations in concentrations. Conversely, a small change in
density, such as the one seen in Fig. 7 at an interface, may We will examine the geometry shown in Fig. 2. There are
contribute significantly to the surface tension. We will dis- periodic boundary conditions in all directions and two flat
cuss this point further in the following section. (on averagginterfaces normal to the axis. We have exam-
The second derivatives of the free energy and the elastimed different runs with average densities ranging from
constants can be obtained from the linear fits in Fig. 4. Fig=0.82m/0° to p=0.925n/03, temperatures fronkgT/e

L L L [

084 086 083 09 092
pa'3/m

B. Interface characterization

ure 5 shows the second derivativests a function ofp, =0.8 tokgT/e=2.0, ande* from 5 to 8. Figure 7 shows
and Fig. 6 shows the elastic constants plotted against andp for a typical system akgT/e=0.8.
and/or ¢p=d/p. Since values of and theK’s were only Most models of binary fluids in the literature assume in-

evaluated near the coexistence lide,(p), the dependence compressibility and therefore that is constant. This is a
on density and concentration is intertwined. The detailedeasonable assumption in the bulk but is violated at an inter-
procedure for finding the functional form gfis discussed in  face, as illustrated in Fig. 7. The density dip in pafielis an
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FIG. 6. The elastic constanks, , K¢, , andK 4 as a function of the density or order parametep==®/p. The points with thé] symbol
are fore* =5 and the# andx symbols are foe* =6. All systems lie on the coexistence line except#hgoint is off coexistence gi=0.83,
®=0.79m/a2. All elastic constants are in units of/m?. The lines represent fits given in Table | and described in the text.

ubiquitous feature of fluid-fluid interfaces noted recently indenying particles at the interface some volume.

several publicationf33,34], including some involving poly- The surface tension associated with the interface is the
mer fluids[14,35. The dip occurs because the energeticallymost important characteristic for determining macroscopic
unfavorable 1-2 particle interactions are concentrated at theehavior. The mechanical definition due to Kirkwood and
interface. The system can lower its free energy by decreasinguff [36] relates the surface tension to the integral of the
the overall density at the interface as this reduces the numbeiifference between the norm&, and parallelP; compo-

of 1-2 particle interactions. The size of the dip is determinechents of the pressure tensor across the interface. For a flat
by balancing this energy gain against the entropic cost froninterface normal to the axis, this can be written as

TABLE I. Fits to measured elastic constants &r=5 and 6 and
0.82m/ o< p<0.925m/¢3. Care should be taken in extrapolating
the elastic constants outside of the measured range. The two alter-
natives given forK, fit equally well over the range of the linear In the quiescent stat®,, is constant throughout the system
response datéd.74<$<0.97). (no flow impliesd,P,z=0 and all quantities are constant in
both they andz directions.

o8 Far from the interface the pressure is isotropic and one
—6.08+ 0.57@) p expectsP,,=P,,=P,,. However, for small systems this ex-
pectation fails. For example foL,=L,=8.20 and L,
=37.80 we found thatP, —P;=0.004 in a homogeneous
system(i.e., without interfaces Although this sounds small,
s when it is integrated over the whole system it yield, (
0.517i0.0310—> #® —P))L, =0.15. This integrated stress difference is not re-
m? lated to the surface tension but still gives a significant con-

Y= f {Pxx(x)_[Pyy(X)+ P,Ax)]/2}dx. (20

0_5

K, 3.16+0.5—| +
m
0_5

Koo —0.225+ 0.011E @°

+

0,5
Ko 0.286+0.015—
mz

o5 tribution to Eq.(20). The effect appears to be due to the fact
0.524 0-03—2) P that the density-density correlation function has not decayed

m to zero at a separation &f =L, but has byL, [16]. This
appears to be a significant but unrecognized source of error

+

.
0.319-0.013—
m2
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FIG. 8. The surface tension for € =5 (x) and 6(#) as a
function of (a) average density af=1.1 and(b) temperature at
p=0.85. Error bars represent systematic errors frgp,—(Py,
+P,,)/2) in the bulk regions. The dashed and solid lineganare
the surface tension computed using the lattice Boltzmann method
for € =5 and 6, respectively, as discussed in Sec. V. The dotted line
0.82 0.84 086 088 09 0.92 is the surface tension computed using the lattice Boltzmann method

p 0.3/m \(/jvii)t(hcthe Flory-Huggins free energy fai* =6 discussed in Appen-

FIG. 7. (&) Order parametefP and (b) densityp along thex
direction of the simulation box, and averaged over thand z
directions. The temperature &=1.1 ande* =5. (¢) ® vs p for
different interfaces witiT=1.1 and average density of 0.8@),
0.85(#), 0.87(x), 0.9(M), and 0.925A).

bution brings it back down agair34].

In addition to the surface tension, it is possible to define a
characteristic width to the interface. The interface profile for
® from the molecular dynamics simulatiopBig. 7(a)] can
_ _ _ _ be fit to a tanh shape or equally well to an error function
in molecular dynamics calculations of surface tensions. Foéri[(x—xo)/\/iz]. Similarly p can be fit to a constant mi-

the larger systems for which we present data, we find thag s 5 Gaussiam exg (x—x)2(28)]. The resulting widths
(P, —P))=0.0002 and P, —P)L, <0.015. are shown in Fig. 9.

Figure 8 shows measured surface tensions as a function of The stress profile through the interface also provides use-

H *
density,", and temperature. Normally, one expects the surs| information. The surface tension is related to the stress
face tension to decrease as you move towards the C”“C"ﬂlwrough the kernel of E¢20)

point. This is certainly the case as one decreases the density
[Fig. 8@]. However, the surface tension increases as a func-
tion of temperature despite the fact that increasing the tem-
perature moves the system towards the critical point. This
effect has been noted before by a number of workgss34.  We measure the local components of the stress tensor di-
The surface tension peaks aroukygll/e=2 and then starts rectly in the molecular dynamics simulations. A typical ex-
decreasing34]. As one increases, there is a stronger mix- ample is shown in Fig. 1@). The variation ofl" is also fit to

ing at the interface that introduces more of the weaker 1-& Gaussian to obtain a width. As shown in Fig. 9, this width
interactions and raises the potential energy. This leads to aa smaller than those obtained from the interfacial profiles of
increase iny until at higher temperatures the entropy contri- the p and®. We will discuss this difference below.

I (%)= Pyu(X) = [Pyy(X) + P,AX)]/2. (21
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* The interfacial stress profile is also related to gradients of
the density and order parameter. Substituting the expression
for the pressure tensor, E@L2), into Eq.(21) gives

T(x)=kgT[K,(3xp)? + Ko (0xP)?+ 2qu>(<9xp)(f?x<b)(]2-2)

&fo

The numerical derivatives are computed by first doing a local
quadratic fit to the daté or ®) over a range of five to seven
points (data were collected in bins with width 0.2Pand
then using the derivative of the local fitting function. Figure
10(b) shows the contributions from the various terms in Eq.
084 085 086 087 088 089 09 (22). As is evident from the figure, the only significant con-
tribution to the interfacial stress comes from g (d,®)?
term. As a result, since the interface profile fbris well fit

FIG. 9. The interface width foe* =6 as a function of average by the error function ef{x—x,)/\2£?] we would expect
density calculated from fits of the order parameateprofile to an  the width obtained from a fit of the stress differerdgx) to
error function(#) and the density profile to a constant minus a a Gaussian to give a width JI2~0.71 of that from the fit to
Gaussian(x). The width obtained from the stress proflleis also  @. The width we actually measure froh(x) is about 0.9 of
shown(M). Lines are only a guide to the eye. that obtained frond (see Fig. 9. That is, the stress profile is
wider than expected, a fact that is also obvious from Fig.
10(b). This may be due to a failure of the square gradient
theory or may be a result of interface fluctuations not yet
taken into account, namely capillary waves.

The widths measured in molecular dynamics simulations
are not the intrinsic values but widths broadened by thermal
fluctuations. Capillary waves result in the measured time av-
eraged widthé being larger than the intrinsic width, by
[37]

P 0-3/m

2 kgT (L)
=+ mm A (23

whereA, is a short scale cutoffA, is expected to be pro-
portional to the intrinsic interface widtlifluctuations on
length scales shorter than the interface width are not capil-
lary waves. We takeA y=c&, whereé, is the intrinsic width
of the ® profile andc is a numerical constant. The bare width
from the ® profile is used forg, since the width fronT" is a
derived quantity in the square gradient theory. As all widths
in the problem are proportional to the intrinsic width of the
@ profile, changing the width used in definingy, will
changec but notAg.

Following Ref.[37] we verify Eq. (23) by plotting the
measured width as a function of system size. This is shown
in Fig. 11(a). Fitting the data to the expressioff=a

0.03

0.02

0.01

Square gradients

0 +bsInL/o, we find thatb ;= kg T/(27y) to well within mea-
, , . ‘ , surement errors, as expected from EB). The other param-
-06 -04 -02 0 02 04 08 eter from the fit
® o3/m

a;=&—bsincéo (24)

FIG. 10. (8 The interface stress differencE(x)=Py,(x) . .
—[Py,(X)+P,(X)]/2 for a system with average densiy=0.83 ?ould be used to Obtalﬁp if we knew_c. Unfor.tunateliy this
and ¢ =6. (b) The interface stress differende (#) and square it alone does_ not provide enough_ mformatlon_ to indepen-
gradient  contributions Ko (,®)2 (%), K,(dyp)? (), and dently determinec and ;. Faced with this ambiguity, Ref.
K,o(dyp) (3xP) (A). The elastic constants were taken from the [37] arbitrarily chosec=13, because it was the smallest
linear response datéhe ¢ fit was used forKy). Data are for a Number where Eq24) had a solution for the range of chain
system with average density 0.83 agft=6. Note that due to the lengths studied: monomers to 30-mers. This is only a lower
periodic boundary conditions there are two interfaces in the systenound forc if ¢ is independent of chain length. As we shall
giving two independent curves ifb). now show, it is possible to determimeuniquely if informa-
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Solving these equations simultaneously éoand o, gives

the result shown in Fig. 1b). Using Eq.(24), we can also
computec from the finite size scaling if we use the intrinsic
widths obtained from Eq25). The agreement seen between
these two methods in Fig. (d gives weight to the assump-
tion that square gradient theory describes the interfaces ac-

curately.
0.5 We can also assess the consistency of the valud&;of
28 3 32 34 36 38 4 42 obtained from the linear response with estimates from inter-
InLjo face data. To do this, we assume capillary waves broaden the
12 ®) interface in a Gaussian mannge., the measured shape of
1 ¢ R the interface is a convolution of the intrinsic shape and a
Gaussian distribution of width/gz—gg). If we further as-
08 ¢ sume thaKy, is constant and that the intrinsic line shape for
g 06 ¢ ® is reasonably approximated by an error functiamich is
" 04 the case for the broadened shape directly meaguttesh
0.2 )
| | ' | PO |y i, =2 (26)
8 © KP(x=0)|y ° T 2 gy,
8 The quantity on the left is the directly measur@apillary
° 4 broadenegstress difference divided by the gradient®fat
the point whered crosses zer¢center of the interfage The
2 ratio of the length scaleslzb/(\/fgrg%), is about 1.230.05
for the interfaces measured. This gives a valueKgf of

: ' : : (0.29+0.03)0°/m?. AsT (anda,®) is peaked atb=0 and
084 088 o/m0-88 0® goes to zero a® — d ., this measure oKy, is dominated by

FIG. 11. (a) Dependence of the interfacial widths computed th_e value ofKg _at(I):O. I_n the preceding section we deter-
from the® profile (#), p profile (x), andI" (M) as a function of the _m'”e‘?' thatl_(‘l’ 'S, essentially constant nedr=0 and that
system size parallel to the interface. The density is 0.85&irdb in th'ss rezglon it should have a value around 0.286-
for all systems. Lines show linear fits to E@3). (b) The intrinsic ~ 0-31%/m". Thus we can be reasonably happy that the elas-
interface width as a function of average density for the order palflC constants determined from linear response are consistent
rameterd profile from molecular dynamicé#) and from lattice ~ With those obtained from the interfaces.

Boltzmann(line). (c) Parametec relating the short scale cutof,
to {4, calculated using Eq(25) () and Eq.(24) (O). Data for IV. FREE ENERGY PARAMETRIZATION

€ =6 are shown but similar results are obtained éb=5. ] ]
In order to use the information from the molecular dy-

namics simulations in a mesoscopic model, we also need to
parametrize the bulk free energy densjtyAs we have di-
rect information about and its various derivatives from the

tion from the stress profile is also used. Doing this, we find
that ¢ is actually much smaller than 13 for the monomers

corllfsidered here. h di h q i interfacial stress and linear response data, this would not at
we assume that square gradient theory describes thg.q 55hear to be a difficult thing to do. Howeve,is a

interfaces, just as it works for linear response, then the Va'“ﬁmction of bothp and ®. The addition of the order param-

of ¢ can be o_btained from the differe_nce in the widths O.f theeter means that expressions for obtaining the free energy
I' and ® profiles. In the square gradient theory the intrinsic

) X ) i from the pressure found in standard refererde3 are not
widths should obey the relatiogf = &5, /2, whereér is the applicable. Figure (€) shows that as one goes through an

intrinsic width of I and £, | the intrinsic width ofd. Based interface,® can be reasonably approximated by a quadratic
on Eq.(23), the measured widthg, and & of the ® andI’ function of the local density. As a result, distinguishing’s
profiles should be dependence o from that onp using interfacial data alone
is extremely difficult. Also, capillary waves change the shape
of the interfacial profiles so that getting information abgut
L directly from the interface shape can be misleading. We
?@0 ' therefore use the linear response data to do the fits and then
compare the resulting surface properties as a test of the pa-
rametrization in Sec. V.
1 keT L Before deciding on a particular functional form, it is
E=_¢2 4 —In(—). (25 worthwhile to examine what we would like to fit, and to
2770 2my |\ Ca, prioritize what is most/least important. Our fit priorities are

kgT

2 _ g2
§d>_ g(l)0+ 27T’y|n
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(1) phase diagram/coexistence lin@.,(p)]1, (2) linear re- A,

sponse of equilibrium phaseompressibility, etd, (3) sur- p0=p$—Ao. (32)

face tension,(4) interface widths. The rationale for this

?i?s?(i:tgrls E:;h{iti;;n?fli rﬁnﬁg})ﬂelggcaﬁgble :f sagslfy ng tgle By rearranging these equations it is also straightforward to
) Arany, us properties. Amodel capableyp ., ihat along the coexistence line

of reproducing the first two items will at least have a reason-

able response to bulk forces. If a model fits the first three

2 2

items then it should reproduce most macroscopic interfacial (ﬂ)
behavior. If in addition the fourth item can be fit, then we can dpo _ &/f _\dpo®@) | F*Ao 37
reasonably expect it to describe a number of microscopic dp —P¥B ap? 2y —P ap? ' (32)
processes with macroscopic consequences, such as droplet —
coalescence or pinchoff. I

There are a number of free energy functionals commonly
used to study fluid mixtures. We found Flory-Huggins theory 92y
has too few parameters to satisfy our first two requirements, dd., Ipdd
while a Landau-Ginzburg expansion requires too many, re- T (33
sulting in ambiguous fits. In this section we discuss an alter- P ﬂ
native parametrization and relegate discussions of Flory- 9D2

Huggins theory to Appendix C.

To minimize degeneracies in the fitting procedure, we will  To use Eq.(27) in the lattice Boltzmann algorithm, we
try to parametrize the free energy in terms of quantities thaheed to choose a functional form for the dependence of the
are directly measured in the molecular dynamics simulationsparameters op. As we have information about both values
The partition function we use is a sum of Gaussians centereghd derivativesof @, for instancg, one could use a spline
at =, plus a third Gaussian centeredd®t0 whose am- it to match the measured values exactly. Alternatively, we

plitude is chosen so as to partially cancel the overlap of thean pick a functional form for the parameters and fit them
other two Gaussians. This results in the free energy densitysyer a range op. For A, a convenient form is

keTh=Ao— pkeT Infexd — Ax(®— D)%/ (2pkgT)]
+exg —Ay(P+D )% (2pkgT)]

Ag=ag+a;p In(pad/m)+ayp?. (34)

Then from Eq.(31),

—exp — Ay(®2+DZ )/ (pkgT) 1}, (27)
=—ay+a;p+ay?

whereA,, A,, and®_, are functions ofp to be determined. Po B0 &P azp @9
As we will show, Eq.(27) reproduces the linear response
data to within statistical errors essentially by construction.and from Eq.(32)
For a single-phase system on the coexistence line, but far 2, \2
from the critical point so tha®.,>0, Eq.(27) simplifies to 5 (ﬂ)

ili 1d J dpdd 1
a more familiar form 1 d_po kT _lr’zf_ PZ —a,s+2a,. (30

KeToh=Ag+ 3 Ay (D — Do) PEP e P (M) P
P2

The parameters of the free energy functional can be de-

termined directly from our molecular dynamics measure-a gimultaneous fit ofp, anddp,/dp, weighted by the sta-
ments of the equilibrium state. On the coexistence lie ( yistical errors from the measurementsmf and the second
== ®d¢,) one can easily show that derivatives used to obtaithp,/dp, is shown in Fig. 12. The
5 5 5 ) values of the fit parameters are given in Table II.
‘9_¢:i J A0+ J ‘ﬂ(d(DCO) (28) Similarly, it is straightforward to do a fit ofb., to a
ap? kT gp2 o2\ dp |’ quadratic function taking into account the information about
dd../dp [Eq. (33)]:

Py PP (ddg
: (29) ®o=bo+bi(p—po) +b2(p—po)?, (37)

dpdd T od2\ dp

. 2R, @,

wherep,=0.85m/c2 is a reference density chosen so as to
(30) make the statistical errors in the fit parameters given in Table

Il independent. This fit is shown in Fig. 3. The parametriza-

tion of the remaining quantityA,, is done in two steps.
For states wher@_, is significantly greater than zero the First, Eq.(30) is numerically inverted to obtaiA, at each
last expression reduces &6 y/d®2=A,. The equilibrium  point using the directly measureti., and %y/dd?. The
hydrostatic pressure is resulting values are then fit to the function:

Py A
aD? - kgT
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TABLE II. Table of parameters for the free energyn Eq. (27).
12 @ Parameters_are o_Iefined in E(®4), (37), and(38). As for the elastic
constants given in Table |, the data were measured for r/83
<p<0.925m/¢? and care should be taken in extrapolating outside
of the measured range.

o
% € 5 6
€ €
ag (-43.92:5.72 — (—43.78:5.8) —
g g
€ €
a (-113.8:13.0 — (~114.0:13.49 —
084 086 088 0.9 0.92 . i
3 €o €0
po”/m a, (86.04:7.42 (86.37:7.7)
pryi m m
(b} m m
46| bo (0.695-0.004 — (0.7390.003 —
mb ag g
T4 b, 3.37+0.15 2.69:0.12
£ 3 3
8427 b, (—12.0+1.6) — (—9.5+1.6) —
S m m
240
< [ 3 3
= €T €T
agl Co (2.011-0.060 — (2.827+0.007) —
m m
36 o3 o3
C —_ R
0.84 0.86 0.88 0.9 1 (20.40-0.67) 21.700.09

po®m

FIG. 12. Fits to(a) pp, and(b) dpy/dp which give the param-
etrization of Ay in Eq. (34). In (a), molecular dynamics data are tions. Lattice Boltzmann simulations were run for the same
shown fore* =5 (M) ande* =6 (#) and the solid and dashed lines system size and compositions as the molecular dynamics
correspond to the fits described in the main text. The dotted line ins;y1ations. We first verified that the lattice Boltzmann pro-
(@ (which overlaps with the solid line except at small corre- o) “correctly reproduced the bulk data. Surface tensions
Sponqs o t.he fits use.d to determipgfor the Flory-Huggins model were then computed from the integral of the stress difference
described in Appendix C foe” =6. In (b) only the &” =6 data are through the interface, Eg21), just as we did for the molecu-
shown. lar dynamics simulations. Figure 8 shows the surface tension
A,=coexd ci(p—po)]. (39 computed from the lattice Boltzmann program us_ing the
elastic constants and@t parameters from Table II. While the
The fitted parameters are giVen in Table Il and the resulting)arametrization On|y used the linear response data’ the sur-
fit to ¢?y/d®? is shown in Fig. £). An exponential was face tensions are very close to the molecular dynamics re-
chosen to fitA, rather than a quadratic or other polynomial gits, although they tend to be slightly higher. As discussed
for two reasons. First, it gave a better fit, and second, thg, sec. |11 B, the interfacial properties are dominated by the

quadratilc déd not remﬁin .mcl)n%tonic or\]/er the full lrapge Ofheak in the free energy and value of the elastic constants near
Interest leading to unphysical effects when extrapolating outy,_ o ajj the fits to the data were for values ¢t>0.73, and

side the range of densities where linear response was me is remarkable that an extrapolation do=0 works so well,

sured. Due to capillary waves we cannot directly compare the
One could, in principle, add additional terms to the leIkfuII interfacial profiles of the density and order parameter to

free energy density that would hawe impact on the coex- i lecul pd . H y pe that th
istence curve or the linear response data fitted so far. Such Qe maolecular dynamics. HOwever, we can vgnfy at the
total mass deficit at the interface is correct. This can be cal-

term would be zero and have zero first and second derlva—ula,[ed from the integral under the dip in plots such as Fig.

tives on the coexistence line. If, in addition, it was peaked a . . : ;
4=0 it would affect the surface tension and interface Width.g(b) or from the increase in the density far from the interface

ﬁhat compensates for the dip. For example, consider a mo-
lecular dynamics simulation where the total average system
density isp=0.85m/0°, kgT/e=1.1, and with lengthL,
=74.36r. We find that the density far from the interfage,
=(0.8526+0.0001)n/ 03, is larger than the system average
To test the above parametrization’s description of interto make up for the deficit at the interface. A lattice Boltz-
face properties we make use of lattice Boltzmann simulamann simulation with the same system size and total average

As discussed in the following section, we do not need suc
terms here but they may be useful in other contexts.

V. TESTS OF PARAMETRIZATION

021505-12



MAPPING MOLECULAR MODELS TO CONTINUUM . .. PHYSICAL REVIEW EB9, 021505 (2004

2
/'*
15[
v L
tob /./_/
g
by )1
< e
05} *_/
-40  -20 0 20 40
Xior 0.02 0.04 0.06 0.08
/R

FIG. 13. Order parameter profile on a cut going through the - .
center of the drop. Note that the molecular dynamics profile has I_F|G_' 1|4];| ITa[?‘Iace ?ressrt:re between the |r;13|de a_ndhout3|de of a
been smeared somewhat due to capillary waves and Brownian mgydl_ndrlca uid “drop, VS the curvature R w _ereR is the drop
tion of the drop that are not present in the lattice Boltzmann simyfadius. Re;ults .from I_att|ce Boltzmann_ S|mulat!dn$ and molecu-
lation. lar dynamics simulationg[]) are consistent with each other and

with the straight line prediction from continuum theory, E&9).

density shows exactly the same mass increase in the bulk. Apo= IR, (39)
Figure 11a) shows that there is also reasonable agreement

between the intrinsic widths CompUIEd via the lattice BOltZ'Where y is the surface tension measured in the molecular

mann and the molecular dynamics, although in this case thgynamics simulation of a flat interface. As can be seen in

intrinsic widths measured from the lattice Boltzmann tend torig. 14, both the molecular dynamics simulation and the lat-

be a bit smaller. S tice Boltzmann results follow this relationship very well.
To test our model parametrization in a different geometry
we examined a cylindrical drop. In three dimensions, a cyl-
. o . ! VI. MODEL COMPARISONS
inder of fluid is unstable to spherical droplet formation. We
avoided this instability by making the radi&sof the droplet In this section we compare our findings to three simplified

bigger than the system size along the axis of the cylingler ( models that are commonly used in mesoscale modeling of
axis). Specifically,R=24.5, L,= 160, andL, andL, were  binary fluids. We first examine the common assumption of
about 100~ For a density ofp=0.85m/¢? this required incompressibility, then consider what properties Flory-
147 456 molecules and 1Gime steps were needed to get Huggins theory is capable of reproducing, and finally show
good statistics, which is reasonably large for a moleculathat inconsistent parameter choices may be responsible for
dynamics simulation. The only significant difference be-spurious velocities in lattice Boltzmann simulations.
tween the molecular dynamics simulation and the lattice Many models of simple and binary fluids assume that they
Boltzmann method is the presence of thermal noise. In thare incompressible. For bulk fluids, including those exam-
molecular dynamics simulation this causes the drop to unined here, this is a very reasonable assumptioff gédp? is
dergo Brownian motion. In order to do a meaningful com-very large compared to other second derivatives of the free
parison we limited this effect by periodically shifting the energy(cf. Sec. Ill A). However, due to the fact th#t, is
system so that the center of mass of the drop remained atnegative, the fluid can be very soft on the short length scales
=z=0. characteristic of interface widths. This invalidates the as-
Figure 13 compares profiles of the order parametesumption of incompressibility in the interfacial region.
through the center of the drop from molecular dynamics and As noted in Sec. Il B, the density drops in the interfacial
lattice Boltzmann simulations. The molecular dynamics pro+egion to reduce unfavorable 1-2 molecular interactions and
file is broadened slightly by capillary waves and Brownianhence the free energy. The quantitative impact of density
motion. Neither effect is present in the lattice Boltzmannchanges can be seen by considering the change in the free
simulation. The two methods both show thiatis lower by  energy barriefEq. (27)] in the interfacial region. Due to the
0.01m/ ¢ than the equilibrium bulk value in the center of the change in density in the interface, we find th& drops
drop. The reason for the drop i is that the interfacial down to around 50% of its value in the bulk. This reduction
curvature produces a pressure differedge, between the in A, spreads the Gaussian functions in Eg7) thereby
inside and outside called the Laplace pressure. This also imeducing the barrier between thed ., states. There is a
creases the density in the drop. FRr=24.5 the density corresponding reduction in the total interfacial tension which
difference from lattice Boltzmann simulations is is given by the integral of'(x) through the interfac¢Eqgs.
0.0086™/03, which agrees with the value of 0.009 (20) and(21)]. Using the Euler-Lagrange equatidiys. (7)
+0.002n/¢ from molecular dynamics. For a macroscopic and(8)] one can show thdt(x) is directly related to the free
cylinder, the pressure difference between the inside and ouenergy barrierl’(x) =kgT#— Ag. Thus to see the impact of
side of the drop should scale with the radiug 38| density changes in the interface we can compare the integral
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of I'(x) using the®d profile from the lattice Boltzmann simu-
lation combined with either a-dependent value ok, or a
constant bulk value of\,. We find that including density
variations reduces the surface tension by a factor of 2—-4
relative to incompressible models. Thus the density drop at
the interface is not a negligible effect for any quantitative
study involving interfaces.

Practitioners of Flory-Huggins theory also commonly as-
sume incompressibility, although it is not an intrinsic as-
sumption of the theory. It is worthwhile to examine how well
Flory-Huggins theory can describe our molecular dynamics
(MD) results if this assumption is relaxed. As mentioned
before, the Flory-Huggins theory has too few parameters to
obtain a precise fit to both the coexistence curve and the
linear response. As discussed in Appendix C, we can obtain
the Flory-Hugginsy parameter from a fit to the coexistence
curve shown in Fig. 3. The resulting linear response seen in N ——
Fig. 5, while not in quantitative agreement with MD results,
should be adequate for qualitative work. The Flory-Huggins | oL S
prediction for the surface tensions seen in Fig. 8 is actually _(b) i o
remarkably good. It is important to note, however, that we L . - s . =
have allowedy to vary with the local density. As a resulj, PERTEE R R
drops significantly in the interfacial region due to the inter- L 2 6 2 s s oo oo oo
facial density drop. This reduces the surface tension by a L . - - - - e e A
large factor compared to incompressible models, just as the L - 2 s = s oe s N A R
reduction inA, discussed above did. As most implementa- Fua e s s 8 4 5 4 oo o
tions of Flory-Huggins models for simulations assume in- S
compressibility, such models will have surface tensions that
are a factor of 2—4 too large.

It is commonly found in lattice Boltzmann simulations
that a stationary droplet in quiescent conditions will develop
a flow field around it similar to that shown in Fig. (E
[27,39. It has recently been pointed out that these spurious
velocities arise due to discretization errg89] which drive
the spurious currents. For our model, fitted to the molecular
dynamics data, we can estimate the truncation error from the
discretization to be~10"% and the velocities seen at the
interface in Fig. 18) are indeed of this magnitudan lattice
units). The discretization error for the standard model from
the literature used to produce Fig. (&b should also be
~10 % however the spurious velocities observed are nearly FIG. 15. ® field (shading and velocity field(vectors for one
100 times greater. Further, the flow field for the standardiuadrant of a stationary cylindrical fluid “drop.” Ite), a standard
model includes considerable vorticity and significant flowsmodel from the literatur¢27] was used and irtb), the model we
far from the interface itself. This suggests that discretizatiorf!aVe maiched to the molecular dynamics data. In units whgre
errs ase diving an unstabnd possbly uphysical R TS T teon e A ) e
mode of the standard system leading to much larger Spur|0L5V§e had used the same scale as that use@)inThe radius of the

velocities. In our model, this mode is absent and discretizaé|r in(b) is slightly smaller but this should only incr i
tion errors are not exaggerated. op s stgntly smafler but this shoud only INCrease spurious

One possible origin for unphysical modes in Fig.(d5 \ézlc;cit@es compared tG). In both (a) and (b) the lattice shown is
S . - . attice spacings wide. The scale in the horizontal and veritcal

and similar models is related to the time scales used. In situg, . 0o s equal

ations where the model parameters have not been measurede '

so that the length and time scales are uncertain, the viscosifyscosity and a diffusion constant that were measured in mo-

and diffusion constant may be set for convenience. Normallyecylar ‘dynamics simulations for similar fluids;~3er/o

this would not affect equilibrium properties, but if unphysi- (40] andD =0.10%/r [15].

cal choices are made, unstable modes such as the ones being

driven by the spurious velocities may be set up. For instance, VIL. SUMMARY AND CONCLUSIONS

unstable modes may appear if the diffusion constant is set so

large that material can diffuse faster than it can flow. To This paper presents detailed molecular dynamics simula-

ensure that this is not the case in our model, we have usedtmn results for a binary mixture of simple fluids and uses
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them to construct a square gradient theory that can be usetmics, producing Marangoni-like effects or changing the
for realistic mesoscale modeling. The MD simulations examwavelength dependent response of the interface. Our results
ine the linear response, interfacial tension, and interfaciafor the influence of density changes on interfacial tension
width as a function of density, temperature, and the repulsiofndicate that these effects may be quite large. While simpler
between different species. Two remarkable conclusions aris@eories(e.g., Appendix ¢ may be able to describe equilib-
from the linear response resulSec. Il A). The first is that ~ fium configurations, they do not include these important de-
a square gradient theory is capable of quantitatively descrip?€ndences on local density. More complex theories that are
ing the response down to wavelengths that are comparable it guided by MD results are unlikely to include important
the molecular spacing<2c). This implies that mesoscale €ffects such as a negative, . It will be interesting to ex-
models may have a much wider range of applicability tharplore the dynamic consequences of such effects in future
might be expected. The second surprising result is that thwork.

elastic constant for density changés,, is negative As a

result, the system is more susceptible to fluctuations at ACKNOWLEDGMENT

shorter wavelengths. Indeed, it is only stabilized at small

scales by atomic discretenef32]. This prevents density  This material is based upon work supported by the Na-
ﬂuctuations on |ength Sca|es IeSS tharwhere the tota' re- tional SCience Foundation Under Grant No. DMR 0083286.

sponse coefficient ,, becomes negative.

Studies of interfacial propertig€Sec. Il B) show that the APPENDIX A: ELASTIC CONSTANT VARIATIONS
common assumption of incompressibility is not valid. This is ) ) .
related to the observation thi(,<0, which lowers the free ~ Frequently the free energy is parametrized as a function of

energy cost of localized density fluctuations. Although thethe individual species densitigg and p,. The free energy
density change is small, it can reduce the interfacial tensiofan then be expressed as
by a factor of 2—4.

The density, order parameter, and surface stress were -
evaluated as a function of position normal to the interface, F=kgT | dr
and used to determine interfacial widths. The variation in
width with system size is consistent with broadening by ther-
mal capillary waves. Comparing the scaling of widths from
the stress and order parameter allows all the parameters of
theF(.:tap;IIazy model to be detgrmtmetd tlndeper;(rj]ently. . The resulting elastic constants are linearly related to those in

its to linear response about states on the coexistenge, (3): K..—K + K. + 2K K. =K +Ko—2K and
curve showed an impressive ability to predict interfaciaIKq ) K=K, + Ko pdr R Rp T RO o
properties. Predicted values of the surface tensfdg. 8) Another order parameter that is often used, the relative

and the density deficit at the interfa¢gec. \} are nearly concentration, isp)=®/p. The free energy becomes
within the statistical error bars of the MD results. This is

particularly surprising given the large change in order param-
eter through the interface and small interface widflg. 9.  r— kBTf dr
The main discrepancy between the MD results and meso-
scale simulations is that the latter do not include interface (A2)
broadening by capillary waves.

Many lattice Boltzmanr{LB) models have been found to These elastic constants have a more complex mapping to
produce spurious velocities around curved interfaces. Whilghose in the main text,
some discretization error is expected, it appears that these

1 2
VRS §K11(VP1)

1
+§K22(VP2)2+ K12V p1-Vpar. (A1)

12— Kp_K(IJ .

1 2 1 2
Ut SK(Vp)2+ 5Ky (V)24 Koy V-V b .

errors are amplified when the time scales in the LB model K,=k,+kys®% p*—2k, P/ p?, (A3)
are chosen arbitrarily or for computational convenience. Us-
ing time scales derived from MD simulations prevents un-

physical choices that, for example, allow material to diffuse

more rapidly than it flows. Figure 15 shows that using MD

parameters can reduce spurious velocities by around three Kp<1>:kp</>/P_k</>q)/P3- (A5)
orders of magnitude.

The final square gradient theofyable Il) has a simple It is obvious from these relations that thés andk’s cannot
analytic form and provides an excellent fit to all MD results both be independent gf or ®. There can be advantages to
for phase coexistence, linear response, and interfacial propsing either¢ or ® in different physical situations. It turns
erties over a wide range of densities. This is particularlyout that for linear response measurements and for the lattice
important for future studies of nonequilibrium phenomenaBoltzmann algorithm it is convenient to work with.
such as pinchoff or contact line motion. Dynamic processes As the elastic constants can vary as a functiodaindp
will lead to variations in local density and order parameterthis should, in principle, be taken into account in E&). For
that will in turn lead to variations in local interfacial stress. the elastic constants used in the main text, the full Euler-
These variations will have important implications for the dy- Lagrange equations are
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FIG. 16. The individual gradient term contributions to the po-

tentials(a) uq [Eq. (A7)] and(b) u, [Eqg. (A6)] through two inter-
faces in a system at average dengity0.85 with e* =6. For g,
the termK ,V2® (@) dominates (9K /dP)(VP)? (M) is small
but visibly different from zero, and%(aKp/é!CI))(Vp)2 (%),
(aqu)/&p)(Vp)2 (), and K4 /9p)VP-Vp (A) are effectively
zero.(b) For u, the significant terms ang,VZp (#), K, V2D (%),
and (aqu,/acD)(VcD)Z (0). The (K¢ /1dp) (VD)2 (A) term is
small but visibly different from zero. The other terrésaKp/ﬁp)
X(Vp)? (M) and K, 19P)Vp-V® (A) are effectively zero.

Mfi—lj—Kszp—KpchZ‘D—%%(Vp)z
+E‘9(;<—p“’— &:q’;‘b (Vd)2— (;—lf;Vp~V(I), (A6)
I %_anv ¢_Kp¢vzp_§%(v¢)2
[%‘Z—ﬁf—‘ﬂ;—p’)‘l’ (Vp)z—'t(—p‘pvqmvp. (A7)
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APPENDIX B: IMPLEMENTATION OF LATTICE
BOLTZMANN

To compare the results of the lattice Boltzmann simula-
tions to molecular dynamics, it is useful to compare the units
used in the simulations. In molecular dynamics we use
Lennard-Jones units, that im, o, and . Time is discrete
with steps ofdt=0.007r. The size of the time step is limited
by the requirement that molecular motion on the steep repul-
sive part of the intermolecular potential must be resolved. In
the lattice Boltzmann simulations a discretization of both
spaceAx and timeAt is required. We will choosé x~ o
primarily based on the requirement of resolving the interface
width. One could, in principle, use a much coarser lattice in
the bulk regions. Stability of our lattice Boltzmann scheme
requires the lattice Mach number to be less than 1. That is
the speed of sound

v~ \/dpo/Ip<Ax/AL.

In Lennard-Jones uniis;~ 500/ 7 for € =5 (see belowso
we takeAt=0.17 so thatvg~0.7AX/At.

As discussed in Sec. IV, the parameters determined from
molecular simulations turn out to be qualitatively different
from those commonly used in lattice Boltzmann simulations.
As such, we had some problems with numerical stability
using standard schemes. Stability was improved by using the
predictor-corrector schenjd1], rather than the standard Eu-
ler scheme. Stability can be further enhanced by iterating the
corrector step a few times. This was found to be helpful in
the initial steps, especially if a particularly poor initial state
was used. In addition, the method for discretization of de-
rivative operators, particularly Laplacian operators, made a
significant difference. Including a mixture of derivatives
along coordinate directions and those taken along the diago-
nal direction improved stability.

To fully specify the model for the lattice Boltzmann algo-
rithm, in addition to Eq(12) for the pressure tensor, we need
explicit expressions foug andpy. These are derived and fit
in the main text but for reference we list the complete ex-
pressions here:

(B1)

2A,
ﬂd)ZT[el((D+cho)+er(q)_q)co)_2erelq)]

Clearly it would be desirable if some of these terms, espe-
cially those involving variations of the elastic constants,
were negligible. For the linear response regime it is straight-
forward to show that these additional terms are of oréfer
[cf. Eq. (19)]. However, we must still investigate their im-
portance for interfaces.

Figure 16 shows various contributions from gradients to
the potentials of EqA6) and(A7) in a typical interface. As 2pA; dD,
can be seen, the terms that dominate have been kept in Egs. Z dp
(7) and (8). The remaining terms are quite small, or essen-
tially zero, thus justifying ignoring them in the main text.
Note that some terms that are quite small in interfaces, such
as qu,Vzp in ug, are required when looking at the linear
response wher¥p andV® are of comparable magnitude.

—KgpV2D—K,V?p, (B2)

IAq 1/ dA, ,
Po=p "~ Aot 7| P, ~Az|l&(P+ Deo)

e, (D—Dyo)2—2ee(P2+d2)]

[&(P+Deo) — e (P— Do) —2€18P]

K
—p<va2p+ Ko V2P + Tﬁ(V@F), (B3)

where
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&= exXH — Ao ® — be)(2pksT) ], 425
4
€= exi] — Ag( @+ Do)/ (2pkeT)], b
)( 8
325
Z=e,+e—e¥€. (B4) 3

275} .-

APPENDIX C: FITS TO FLORY-HUGGINS FREE ENERGY o84 o086 o088 09 oo

3
. . poim
There are a number of free energy functionals in common

use to study fluid mixtures. For polymer mixtures, the Flory-
Huggins free energy density is most commonly used. For
monomers the free energy density dividedkay is [13]

P2

P1P2

Yru=paln +x . (CY

P

where y is the only free parameter. This is just a modified
entropy of mixing and, in order to obtain the bulk pressure,
one must add to this an additional functigg of p alone,

0.84 0.86 0.88 0.9 0.92
P U'B/m

FIG. 17. (a) x parameter obtained from the fits do.,(p) (Fig.
3) and (b) d®.,/dp. Solid and dotted lines correspond to fits for
Y=ot Yen.- (C2 &#—6 and 5, respectively. Molecular dynamics data(bi are for
o o =5 (%) and 6(¢).
If one were to follow the spirit of the derivation of the Flory-
Huggins model), should be determined primarily from the

entropy of an ideal gas plus some quadratic terms to corre iahtf d iahted | e
for energy interactions. In practice it is unrealistic to expectiSing @ straightforward weighted linear regressidhere

such a construction to work. We shall use the same form fop/0uld not be any conflict between them as we are just fitting

o as we used foA, in Eq. (34). There is also some ambi- d..(p) and the derivative of this functiod®.,/dp]. The

guity in the definition of they term in the Flory-Huggins free weights are computed from the statis.ticall errors of the mea-
energy. Some authors use a slightly different termsurements ofb., and the second derivatives. We use stan-

Xplpz/(vpzh wherev is a reference volum@42]. If we dard methods to find the statistical errors of the derived

allow x to be a function of then both terms are equivalent quantities. The resulting fits are shown in Fig. 17 and the
but the meaning o will be slightly different. _
We obtainy by fitting ® ., andd®.,/dp as a function of TABLE lll. Table of parameters for the Flory-Huggins free en-

p. In the bulk stategq, is zero and there are no gradients so€rgy given in Eqs(C1) and (C2). Parameters are defined in Egs.

that Eq.(8) requires that on the coexistence line (34) and(C5). As for the parameters given in the main text, the data
were measured for 0.88/03< p<0.925m/¢° and care should be
taken in extrapolating outside of the measured range.

épen we can do a simultaneous fit to these two equations

= —= = — _—— — *

b o 2Mi—d, 2X, ©9 € 5 6
Equation(33) also holds, and if one evaluates these derivaa, (—31.51+2.9) < (—26.50+6.3) £
tives for the Flory-Huggins free energy one can obtain the o® o®
relation € €

a; (-92.33:6.7) — (—80.18+14) —
1 1 b do
+ )(—-l— —CO) eo® ec®
1+®/p 1-D/p/lp dp ay (77.0:3.8 — (69.7+8.3 —
m m
b do dJ
:X(_+ co) X cay o 10.15+4.7 10.68-5.0
p dp ap o3 o3
X1 (—28.47:10.4 — (—29.78£11.2) —
whered®,/dp is evaluated using Eq33) and the mea-
sured values of the second derivatives. If we tgk® be a o6 o
quadratic function of density, X2 (23.42+5.7) e (24.52+6.32 s
X=Xo+ X1+ X2P, (C5)
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parameters are given in Table IIl. tives of the bulk free energy as measured from linear re-

Next we fit the bulk pressurg, to obtainy,. Unlike the  sponse in the molecular dynamics simulations and from the
fits of the equilibriump, in the main text, which involved fits. The Flory-Huggins theory overestimates the concavity
only Ay, there is now a contribution from th@-dependent  of the free energy minima. Figure 8 shows the surface ten-

terms in the free energy. In particular, sion derived from a lattice Boltzmann implementation of the
P 1 p fit to the Flory-Huggins theory. The agreement is remarkably

pozpﬂ_ Yot ~kaT(p2— 92X (ce)  good. However, Flory-Huggins normally assumes incom-
ap 4 ap pressibility. If we had assumed that the density, and therefore

One could, in principle, also use the information aboutX’ was constant, the surface tension would be much too

L . large.

dpy/dp that we used in fittingA, for the single-phase free . . .
er?grg)f. However, the additio?\?)l terms makge apcombined fit Itis also worthwhile to compare the values pbbtained
extremely messy and of dubious value. One still needs §€'€ © othear methods of estimatig For long polymers at
parametrization ofiy, in terms of p and we use the same P=0.85M/0”, Grest and co-workerfl3] have estimateg
functional form as was used fa¥, (although the numerical in two ways. Using a so-called one-fluid approximation, they
values forag, etc., will of course be different The result- ~ €stimatex~0.76¢* e/kgT. Using an incompressible random
ing fit to p, is shown as a dashed line in Fig. 12 and thephase approximation to evaluate the static structure factor,
parameters are given in Table IIl. they obtain a larger value gf~1.0e* e/kgT. Our results

As all parameters in the Flory-Huggins free energy arecorrespond to a somewhat smaller value of about
now determined, we can now compare the quantities not ex3.54e* e/kgT, which is not surprising given that we consider
plicitly used in the fits. Figure 5 shows the second deriva-simple monomers.
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