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Mapping molecular models to continuum theories for partially miscible fluids

Colin Denniston1,2 and Mark O. Robbins1
1Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218, USA

2Department of Applied Mathematics, The University of Western Ontario, London, Ontario, Canada N6A 5B8
~Received 5 September 2003; published 25 February 2004!

We map molecular dynamics simulations of fluid-fluid interfaces onto mesoscale continuum theories for
partially miscible fluids. Unlike most previous work, we examine not only the interface order parameter and
density profiles, but also the stress. This allows a complete mapping from the length scales of molecular
dynamics simulations onto a mesoscale model suitable for a lattice Boltzmann or other mesoscale simulation
method. Typical assumptions of mesoscale models, such as incompressibility, are found to fail at the interface,
and this has a significant impact on the surface tension. Spurious velocities, found in a number of discrete
models of curved interfaces, are found to be minimized when the parameters of the mesoscopic model are
made consistent with molecular dynamics results. An improved mesoscale model is given and demonstrated to
produce results consistent with molecular dynamics simulations for interfaces with widths down to near
molecular size.
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I. INTRODUCTION

Mesoscale continuum models are becoming increasin
popular for studies of complex fluids@1,2#. Rather than using
a constitutive equation for the local stress based purely
some function of strain, these models incorporate a dep
dence on the internal microstructure by including the evo
tion of a local order parameter. They have met with succ
in describing bulk properties of some materials, such
shear thinning in liquid crystals@3#, shear banding flows@4#,
and phase ordering in binary fluids@5#. However, their treat-
ment of interfacial stresses has not been tested for con
tency with large scale molecular simulations. This is an i
portant omission since the detailed interfacial behavior
have a dramatic influence on macroscopic flows.

One example where molecular scale interfacial proper
are important is in pinchoff of fluid drops. In cases where
fluid drop breaks up due to some external force, there ca
a cascade of instabilities down to microscopic length sca
@6#. How such instabilities are cut off is a question of acti
research@7# with practical applications to coatings of micro
particles@8#. Another example is dynamic wetting@9#. When
a liquid-liquid interface intersects a stationary solid bound
it makes a well-defined angle with the solid known as
contact angle. When the solid is moving, thedynamiccontact
angleud is a function of the wall velocity. There is signifi
cant interest in reproducing this velocity dependence wit
mesoscopic models@10#. However,ud is affected by details
of the fluid-fluid interface and the solid-fluid interface th
are currently unknown. Quantitatively reproducing these
fects requires a detailed examination of the microsco
structure of the interfaces near the contact point and how
information can be mapped to the scale of continuum mod
@11#.

The difficulty in selecting an appropriate mesosc
model is that the number of parameters in the model is u
ally much larger than the number of macroscopic proper
that are fit. In the absence of complete information, resea
ers are led to pick parameters primarily for convenien
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Some of the unexpected consequences of these choice
discussed in Sec. VI. Our aim in this paper is to remove
uncertainty in parameter choice by providing a complete
scription of a simple fluid model. This should then serve a
guide for constructing molecularly based models of mo
complex fluids.

We examine a binary mixture of simple fluids. The tim
and distance scales involved in the hydrodynamic flow a
diffusion of such fluids are accessible to molecular dynam
simulations. This allows us to map out the parameters of
mesoscopic model from the molecular simulations. In ad
tion, we can test this mapping by comparing its predictio
to simulations for a range of situations not explicitly used
the fits. As methods to map parameters from microscopic
macroscopic models are not well established, we feel i
essential to use simple models that allow extensive testin
the mapping.

The final mesoscale model matches changes in the l
stress, as well as order parameter and density profi
through interfaces in the system. Nonlocal terms in the f
energy, in this case gradients of order parameter and den
are essential for reproducing the observed microscopic st
at interfaces. The results show that many common assu
tions are invalid. For example, many models neglect den
variations because the bulk fluids are essentially incompr
ible. Despite this, we find that density variations at the int
face still have a significant effect on the interfacial tensio
Perhaps more surprising is that some of the elastic const
multiplying gradient terms are negative: The system is sta
lized by atomic discreteness at short scales.

In the following section we outline our molecular an
mesoscale models, along with the methods we use to si
late them. In Sec. III we describe the molecular dynam
characterization of both the bulk phases and interfaces of
binary fluid. Fits to various free energy functionals are d
scribed in Sec. IV. A comparison to some simulations
situations not used in the fitting procedure is given in Sec
We conclude with a summary and discussion of implicatio
for further work.
©2004 The American Physical Society05-1
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II. SIMULATIONS AND MODELS

A. Molecular scale model

As we wish to explore a wide range of static and dynam
properties in our model, it is essential that it is kept relativ
simple. We will use a model similar to that used by a num
of researchers to examine critical properties of fluid mixtu
@12#, capillary waves@13#, and interfacial slip@14–16#. The
model consists of a mixture of two types of molecules,
beled 1 and 2. The interactions between atoms of typei and
j separated by a distancer are modeled using a truncated a
shifted Lennard-Jones potential,

Vi j ~r !54e i j @~s/r !122~s/r !611/4#, ~1!

wheree i j specifies the interaction energy, ands the interac-
tion length. The potential is truncated at the minimum of t
potentialr c521/6s to improve computational efficiency. A
a result, the interactions are strictly repulsive. For simplic
all molecules have the same massm. Two molecules of the
same type interact with the energy scalee115e225e. An
extra repulsion is added between unlike molecules,e12
5e215e(11e* ), to control miscibility.

The degree of phase separation is quantified by the o
parameterF5r12r2 , wherer1 andr2 are the local densi-
ties of species 1 and 2. Schematics of the phase diagram
function of densityr, temperatureT, and miscibility param-
etere* are shown in Fig. 1. For sufficiently high densities t
two fluids change from completely miscible to complete
immiscible ase* increases@Fig. 1~a!# or T decreases@Fig.
1~b!#. For sufficiently highe* one can observe coexistence
two partially miscible states by adjusting the temperature
density@Figs. 1~c! and 1~d!#.

The object is to map the molecular model to a continu
mean-field theory. Thus, we wish to avoid close proximity
a critical point where the behavior is dominated by lar
scale fluctuations. However, if one is too far from the critic
point the interface may be too sharp to be described by

FIG. 1. Schematic slices through the phase diagram at~a! con-
stant temperature,~b! constante* , ~c! constante* and r, and ~d!
constantT ande* . In ~c! and ~d! the horizontal lines tie coexisting
phases andx marks a critical point.
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soscopic models with a continuously varying order para
eter. While not obviousa priori, we find that there is a sig
nificant range of parameters where mean-field theory can
used. The constraints would be even more relaxed in a p
mer mixture where, due to the polymer length, the interfa
are broader and the system is more mean-field-like. Ho
ever, the convective-diffusive hydrodynamics of polym
molecules of any significant length are currently inaccess
to molecular dynamics time scales.

Periodic boundary conditions are applied in all three
rections of the simulation cell. In systems with interfaces,
take the period in thex directionLx to be three to six times
larger than the periods in the other directions, which
usually equal. Most results are reported for systems w
16 384 molecules that are roughly evenly divided betwe
type 1 and type 2. The total mean density was varied
tween r50.83m/s3 and r50.925m/s3. For the system
with r50.85m/s3, the system size wasLy5Lz516.1s and
Lx574.36s. A typical system configuration is shown in Fig
2.

The simulations were performed using a variant
LAMMPS from Sandia National Laboratories@17#, which
uses spatial decomposition to parallelize the calculations
determine neighbor lists. The equations of motion are in
grated using the velocity-Verlet algorithm@18#. The time step
dt50.007t, where t[s(m/e)1/2 is the characteristic
Lennard-Jones time scale. To controlT, the motion in they
direction is coupled to a Langevin thermostat@18,19#. This
direction was chosen because it is always perpendicula
any interfaces in the system. However, for the equilibriu
situations considered here, applying the thermostat in
three directions produces equivalent results. The drag ter
the thermostat has a damping rate of 0.5t21. This corre-
sponds to underdamped motion so that even in they direc-
tion the motion is dominated by inertia.

To speed up the equilibration time, we supplement
molecular dynamics moves with a Monte Carlo procedu
Every 500 steps, molecules are relabeled~from 1 to 2 or vice
versa! according to the Metropolis transition rule. This is
procedure first used for lattice simulations@12# and later ex-
tended to molecular dynamics simulations of polymer m
tures@13#. After equilibration, the Monte Carlo routines ar
turned off. Typically, we run the simulation for 53105dt
with the Monte Carlo routines turned on. We wait a furth
53105dt to ensure that any convective flow caused by
relaxation of the initial~nonequilibrium! state has died away
Data are then collected and averaged over the next 107dt.

The local pressure tensor in a molecular dynamics sim
lation has the following form@18#:

FIG. 2. A liquid-liquid interface between Lennard-Jones flui
at densityr50.85m/s3. System size isLx574.36s and Ly5Lz

516.1s, and there are periodic boundary conditions in all thr
directions. The temperature iskBT/e51.1 ande*55.
5-2
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MAPPING MOLECULAR MODELS TO CONTINUUM . . . PHYSICAL REVIEW E69, 021505 ~2004!
Pab~r !5^rvavb&~r !2 (
i , j . i

K r i j a

r i j

]Vi j

]r i j
E

Ci j

drb8 d~r2r 8!L
5^rvavb&~r !1 (

i , j . i
K f i j aE

Ci j

drb8d~r2r 8!L , ~2!

where^¯& denotes a thermal average,Ci j is a contour join-
ing atoms i and j separated by the vectorr i j , and Greek
indices indicate components along thex, y, andz directions.
In what follows, we adopt the summation convention f
repeated indices. An apparent ambiguity in Eq.~2! arises
from the fact thatanycontour would appear to be acceptab
in that it satisfies microscopic momentum balance. Howe
requiring the microscopic stress to conform to the symme
and transformation properties obeyed by the macrosc
stress makes the contour choice unique. The appropriate
tour is just the straight line between the two atoms, a cho
originally proposed by Irving and Kirkwood@20#. This is
true whether or not you impose the additional requireme
on the scale of the averages in Eq.~2! @20,21# or on the
corresponding microscopic instantaneous many-body v
able inside the averages@22#.

Calculating and binning the stress to get local informat
can be computationally intensive, as it needs to be done
every force pair in the system. According to Eq.~2!, the
stress associated with each pair should be partitioned in
portion to the fraction of the line interval between them th
lies in each spatial bin. Because this is geometrically a
computationally challenging, the stress contribution of
given force pair is usually assigned instead to the end po
of the contour line joining them. As noted by several auth
@23#, this can lead to artificial variations in the stress ne
interfaces. While this does not affect the total surface t
sion, it does affect the local stress anisotropies that we c
sider below~e.g., Fig. 10!. We developed a different metho
that efficiently approximates Eq.~2!. The contour line de-
fined by r i j is divided into n discrete segments of equ
length, each carrying a fraction 1/n of the force pair’s con-
tribution to the stress. This contribution is assigned to
spatial bin containing the center of the segment. We incre
n until the local stress converges, findingn54 is sufficient
for the short range interactions considered here. In each
we ensure that the component of the pressure tensor pe
dicular to fluid/fluid interfaces is constant, as required
conservation of momentum. We also find that calculating
stress more often than every fourth time step gives no
ticeable improvement in statistics.

B. Mesoscale model

Continuum hydrodynamics is based on conservation la
and the assumption of local equilibrium. The assumption
local equilibrium requires the existence of a free energy d
sity. Further, this free energy density must be expressible
functional of the densityr, temperatureT, and order param-
eter F. Once determined, this free energy density can
used to calculate the stress tensor and chemical potentia
quired in a full mesoscopic continuum theory.
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A number of mesoscale theories are available. Den
functional theories based on a weighted density approxi
tion can reproduce the qualitative shape of order param
and density profiles through static interfaces, although
stress profile does not appear to have been studied@24–26#.
However this approach is computationally challenging b
cause it requires the use of integrodifferential equations.
interest is in models that are easily generalized to none
librium situations so we restrict ourselves to the simpl
method of including spatial variations, namely one involvi
derivatives of the local densities. Implementations of su
theories come under many names in the literature. Two of
most common are lattice Boltzmann simulations@1,27# and
diffuse interface hydrodynamics@2#.

To lowest order in gradients of the total densityr and the
order parameterF, the free energy functional can be writte
as

F5kBTE dr H c1
1

2
Kr~“r!21

1

2
KF~“F!2

1KrF“r•“FJ , ~3!

whereT is the temperature,kB is Boltzmann’s constant, and
the local bulk free energyc and elastic constantsK may be
functions ofr, F, and T. If the two phases have the sam
density and elastic constants~‘‘symmetric’’ case!, then the
free energy density must be an even function ofF. This
requiresKrF to be identically zero or an odd function ofF.
Mappings of the elastic constants used here to those of a
other common parametrizations of the free energy are gi
in Appendix A.

Conservation of the numberMi of particles of each type
imposes the constraints

M11M25E dr r, ~4!

M12M25E dr F. ~5!

Thus at equilibrium we wish to minimize the Lagrangian

L5F1mrkBTS M11M22E dr r D
1mFkBTS M12M22E dr F D , ~6!

where mr and mF are Lagrange multipliers, and the~con-
stant! factors ofkBT are included for later convenience. Th
Euler-Lagrange equations give

mr5
]c

]r
2Kr¹2r2KrF¹2F2

]KrF

]F
~“F!2, ~7!

mF5
]c

]F
2KF¹2F2KrF¹2r. ~8!
5-3
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C. DENNISTON AND M. O. ROBBINS PHYSICAL REVIEW E69, 021505 ~2004!
In deriving Eq.~8! we have ignored terms arising from vari
tions ofKr andKF with r andF. Only the variation ofKrF

with F is retained as it must be an odd function ofF. The
equations obtained upon relaxing these assumptions an
justification for ignoring the extra terms that result are giv
in Appendix A.

The Lagrangian densityL,

L
kBT

5c1
1

2
Kr~“r!21

1

2
KF~“F!2

1KrF“F•“r2mrr2mFF, ~9!

does not contain any explicit dependence on spatial coo
nates. As a result, Noether’s Theorem@28# can be used to
determine the pressure/stress tensorP. It implies that conser-
vation of momentum takes the form

“•P50, ~10!

where

Pab52Ldab1]ar
]L

]]br
1]aF

]L
]]bF

. ~11!

As this is related to conservation of momentum, we can
sociateP with a nondissipative stress, or pressure ten
SubstitutingL and the Euler-Lagrange equation formr gives

Pab

kBT
5

p0

kBT
dab1KrF ~]ar!~]br!2

1

2
~]gr!2dabG

1KFF ~]aF!~]bF!2
1

2
~]gF!2dabG1KrF@~]aF!

3~]br!1~]ar!~]bF!2~]gF!~]gr!dab#, ~12!

where the hydrostatic pressurep0 ~trace of 1
3 Pab) is

p05kBT~rmr1FmF2c!, ~13!

and the expressions formF andmr are given in Eqs.~7! and
~8!. The relations for the pressure tensorPab and the chemi-
cal potentialmF will allow a direct comparison between th
molecular and mesoscopic scale.

C. Lattice Boltzmann algorithm

Mesoscale schemes, of which lattice Boltzmann al
rithms are an example, have proved very successful in si
lations of complex fluids@1#. Lattice Boltzmann algorithms
can be viewed as a slightly unusual discretization of
equations of motion or as a lattice version of a simplifi
Boltzmann equation. In the free energy implementati
equilibrium properties of the fluid are naturally incorporat
into the algorithm using ideas from statistical mechan
@27#. As the systems discussed in this paper are translat
ally invariant in at least one dimension, a two-dimensio
lattice Boltzmann algorithm will suffice@29#. We use a nine-
velocity model on a square lattice. Minor problems related
Galilean invariance@27# are removed via a correction term
02150
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the second moment@30#. Notes useful for the implementa
tion of the scheme are included in Appendix B.

The lattice Boltzmann scheme simulates the full dynam
cal equations of convective-diffusive hydrodynamics. The
include the continuity equation

] tr1]arua50, ~14!

whereu is the fluid velocity and Greek indices indicate d
rections. Conservation of momentum takes the form

] trua1]bruaub52]bPab1
rt f

3
]b

3F S 123
]p0

]r D dab]gug1]aub1]buaG ,
~15!

where the parametert f sets the viscosityh. Finally, there is
the convection-diffusion equation

] tF1]aFua5tgFG¹2mF2]bS F

r
]aPabD G . ~16!

The second term on the right, describing a flow-induced d
fusion @31#, is a common feature of lattice Boltzman
schemes and is usually negligibly small. We set the algor
mic time constanttg to unity so thatG is the diffusion con-
stant. Viscous stresses associated with velocity gradients
not relevant here as all velocities are zero. However, we
make use of these terms in future works.

III. MOLECULAR DYNAMICS MEASUREMENTS

As seen in Fig. 1, there are a number of parameters wh
affect the phase~mixed or separated! of the system. Much of
the interesting behavior in binary fluids occurs when tw
phases coexist, so we will work with systems near the co
istence line. Coexisting phases have the sameT ande* , butr
and F vary through the interface. Unless otherwise stat
simulations are performed atkBT/e51.1. The free energy
functional, Eq.~3!, is then determined from simulations a
e*55 and 6.

FIG. 3. Portion of the coexistence curve fore*55 ~!! ande*56
~l!. The solid line is a quadratic fit to the data and the dashed
is from a fit to Flory-Huggins theory described in Appendix C
Error bars are comparable to the symbol size.
5-4
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The location of the coexistence lineFco(r), a section of
which is shown in Fig. 3, can be easily found by varying t
average density and letting the system equilibrate~a process
we accelerate using the Monte Carlo routines!. To obtain
further information about the free energy in the vicinity of
equilibrium state, we first study the linear response of
system to small perturbations. As we show in Sec. III A, t
furnishes us with the second derivatives of the bulk free
ergyc and the elastic constants in the equilibrium state. S
tion III B considers interfacial behavior. The surface tens
is evaluated as a function ofr andT, and the effect of cap-
illary waves on the measured interface shape is examine

A. Linear response of equilibrium states

We begin with an equilibrated single-phase configurat
from a molecular dynamics simulation. Thus the ‘‘basi
state has no gradients of any kind. We then add a small fo
on atoms of typei, Fi5d icos(qx). The forces can be incor
porated into the chemical potentials, Eq.~8!, as

mr
F5mr2

d11d2

2qkBT
sin~qx!1O~d2!,

mF
F 5mF2

d12d2

2qkBT
sin~qx!1O~d2!, ~17!

wheremr andmF are given in Eq.~8!. If the d i are small, we
expect a linear response. Then

r5r01rd sin~qx!1O~d2!,

F5F01Fd sin~qx!1O~d2!, ~18!

wherer0 and F0 represent the undisturbed state. Plugg
this into the previous equations and expanding about
equilibrium state gives
B

g

ffi
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FIG. 4. Linear response coefficients as a function of wave ve
squared. The slope of each linear fit~lines! gives an elastic constan
and the intercept gives a second derivative ofc. The temperature is
kBT/e51.1 ande*56. Average density is 0.83~l!, 0.85~!!, 0.87
~j!, or 0.9m/s3 ~m!. Statistical error bars are comparable to sy
bol sizes.
S Lrr LrF

LFr LFF
D S rd

Fd
D[S ]2c

]r2
1Krq2

]2c

]r]F
1KrFq2

]2c

]r]F
1KrFq2

]2c

]F2
1KFq2 D S rd

Fd
D 5S d11d2

2qkBT

d12d2

2qkBT

D 1O~d2!, ~19!
o
s of
d in
ve-

ry
where the derivatives are about the equilibrium state.
varying the d i and wave vectorsq we can determine the
second derivatives ofc and the elastic constantsK of the
equilibrium state.

To separate out theq dependence we use the followin
technique. For a givenq we run two simulations, one with
d15d250.2 and another withd152d250.1. This gives us
four equations to determine the four elements of the coe
cient matrix~in reality, we have one extra equation due to t
symmetry of the matrix!. This process must be repeated fo
number of differentq in order to separate out theq depen-
y

-

dence of each term. We obtain results for sixq’s simulta-
neously by applying perturbations at two different~and in-
commensurate! q’s in each of thex, y, andz directions.

The results forL can be seen in Fig. 4. The first thing t
note is that the matrix elements are indeed linear function
q2. This indicates that the square gradient theory, assume
Eq. ~8!, is capable of describing this system even at wa
lengths as short as 2s. A surprising result is that bothLrr and
LrF have a negative slope, implying thatKr and KrF are
both negative. This means that the square gradient theo
becomes unstable to fluctuations at short wavelengths~;1s!
5-5
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C. DENNISTON AND M. O. ROBBINS PHYSICAL REVIEW E69, 021505 ~2004!
where one of the eigenvalues ofL crosses zero. As this dis
tance is comparable to the molecular separation, fluctuat
on shorter scales are unphysical. However, this sets a
lower limit for the mesh spacing introduced in the latti
Boltzmann simulations. Using a mesh spacing shorter t
the typical molecular separation to ‘‘improve accuracy’’
not only pointless, but will be unstable@32#.

It is also interesting to note thatLrr is considerably larger
~five to ten times! than the other components. This reflec
the fact that it is harder to create fluctuations in density th
fluctuations in concentrations. Conversely, a small chang
density, such as the one seen in Fig. 7 at an interface,
contribute significantly to the surface tension. We will d
cuss this point further in the following section.

The second derivatives of the free energy and the ela
constants can be obtained from the linear fits in Fig. 4. F
ure 5 shows the second derivatives ofc as a function ofr,
and Fig. 6 shows the elastic constants plotted againsr
and/or f[F/r. Since values ofc and theK ’s were only
evaluated near the coexistence line,Fco(r), the dependence
on density and concentration is intertwined. The detai
procedure for finding the functional form ofc is discussed in

FIG. 5. The second derivatives ofc as a function of density
along the coexistence line for~l! e*56 and~!! e*55. Data points
were obtained from the intercepts of the linear fits in Fig. 4. T
second derivatives of the parametrization ofc for e*56 ~solid line!
ande*55 ~dashed line! given in Sec. IV and the Flory-Huggins fre
energy fore*56 ~dotted line! discussed in Appendix C are als
shown.
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Sec. IV. We focus here on parametrizing the elastic const
because they are important in understanding the interfa
tension results in the folowing section. Note that the var
tion of the K ’s with r and F was ignored in the chemica
potentials of Eqs.~7! and ~8!. Appendix A explains why the
variations discussed below can be ignored in these equat

To separate theF and r dependence of the elastic con
stants we must consider points off the coexistence line
principal this requires simulations on a two-dimension
grid. However, we find thatKr appears to depend only onr,
while KrF and KF depend only on the scaled variab
f5F/r. This is illustrated by including a point,r
50.83m/s3, F50.79m/s3, in Fig. 6 that is away from the
coexistence line. This point collapses on the remaining d
when Kr is plotted againstr and KrF and KF are plotted
againstf. However, it lies far from the other data when th
elastic constants are plotted against the other variable
illustrated in the plot ofKF vs r. Perhaps most surprising i
that the results for differente* also collapse in Figs. 6~a!,
6~b!, and 6~d!. Thus we can fit the data for the elastic co
stants with one set of parameters.

Given the above results we takeKr independent ofF and
fit it to a linear function ofr with the result given in Table I.
By symmetry, KrF must be an odd function ofF. The
dashed line in Fig. 6~b! corresponds to a fit of the data a
suming KrF;f whereas the solid line is a fit assumin
KrF;f3. The cubic function yields a better fit, giving th
result listed in Table I. This suggests that the common pr
tice of neglecting terms involvingKrF is justified in situa-
tions wheref is small, such as near the critical point, but
not justified in the more typical case considered here.

Symmetry constrainsKF to be an even function off. The
dotted line in Fig. 6~d! comes from a fit ofKF to a quadratic
function of f. This clearly deviates systematically from th
data which appear to be approaching a much flatter func
of f asf→0. The solid and dashed lines, which both furni
good fits over the range of data, correspond, respectively
the f8 andf10 fits given in Table I. As we shall see in th
following section, the value ofKF has a significant impac
on interface properties. However, these properties are m
strongly dependent on the value ofKF around f50. As
such, the fact thatKF is nearly constant in this region is
highly desirable result. However, in order to have confiden
in an extrapolation ofKF from values off.0.74 down to
f50 requires that we examine the interfaces explicitly.

B. Interface characterization

We will examine the geometry shown in Fig. 2. There a
periodic boundary conditions in all directions and two fl
~on average! interfaces normal to thex axis. We have exam-
ined different runs with average densities ranging fromr
50.82m/s3 to r50.925m/s3, temperatures fromkBT/e
50.8 tokBT/e52.0, ande* from 5 to 8. Figure 7 showsF
andr for a typical system atkBT/e50.8.

Most models of binary fluids in the literature assume
compressibility and therefore thatr is constant. This is a
reasonable assumption in the bulk but is violated at an in
face, as illustrated in Fig. 7. The density dip in panel~b! is an

e
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MAPPING MOLECULAR MODELS TO CONTINUUM . . . PHYSICAL REVIEW E69, 021505 ~2004!
FIG. 6. The elastic constantsKr , KF , andKrF as a function of the densityr or order parameterf5F/r. The points with theh symbol
are fore*55 and thel and! symbols are fore*56. All systems lie on the coexistence line except the! point is off coexistence atr50.83,
F50.79m/s3. All elastic constants are in units ofs5/m2. The lines represent fits given in Table I and described in the text.
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ubiquitous feature of fluid-fluid interfaces noted recently
several publications@33,34#, including some involving poly-
mer fluids@14,35#. The dip occurs because the energetica
unfavorable 1-2 particle interactions are concentrated at
interface. The system can lower its free energy by decrea
the overall density at the interface as this reduces the num
of 1-2 particle interactions. The size of the dip is determin
by balancing this energy gain against the entropic cost fr

TABLE I. Fits to measured elastic constants fore*55 and 6 and
0.82m/s3,r,0.925m/s3. Care should be taken in extrapolatin
the elastic constants outside of the measured range. The two
natives given forKF fit equally well over the range of the linea
response data~0.74,f,0.97!.

Kr S3.1660.5
s5

m2D 1S 26.0860.57
s8

m3D r

KrF S20.22560.011
s5

m2D f3

KF S0.28660.015
s5

m2D 1S 0.51760.031
s5

m2D f8

S 0.31960.013
s5

m2D 1S 0.52460.03
s5

m2D f10
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denying particles at the interface some volume.
The surface tension associated with the interface is

most important characteristic for determining macrosco
behavior. The mechanical definition due to Kirkwood a
Buff @36# relates the surface tension to the integral of t
difference between the normalP' and parallelPi compo-
nents of the pressure tensor across the interface. For a
interface normal to thex axis, this can be written as

g5E $Pxx~x!2@Pyy~x!1Pzz~x!#/2%dx. ~20!

In the quiescent state,Pxx is constant throughout the syste
~no flow implies]aPab50 and all quantities are constant
both they andz directions!.

Far from the interface the pressure is isotropic and o
expectsPxx5Pyy5Pzz. However, for small systems this ex
pectation fails. For example forLy5Lz58.2s and Lx
537.8s we found thatP'2Pi50.004 in a homogeneou
system~i.e., without interfaces!. Although this sounds small
when it is integrated over the whole system it yields (P'

2Pi)L'50.15. This integrated stress difference is not
lated to the surface tension but still gives a significant c
tribution to Eq.~20!. The effect appears to be due to the fa
that the density-density correlation function has not deca
to zero at a separation ofLy5Lz but has byLx @16#. This
appears to be a significant but unrecognized source of e

er-
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C. DENNISTON AND M. O. ROBBINS PHYSICAL REVIEW E69, 021505 ~2004!
in molecular dynamics calculations of surface tensions.
the larger systems for which we present data, we find
(P'2Pi)<0.0002 and (P'2Pi)L'<0.015.

Figure 8 shows measured surface tensions as a functio
density,e* , and temperature. Normally, one expects the s
face tension to decrease as you move towards the cri
point. This is certainly the case as one decreases the de
@Fig. 8~a!#. However, the surface tension increases as a fu
tion of temperature despite the fact that increasing the t
perature moves the system towards the critical point. T
effect has been noted before by a number of workers@25,34#.
The surface tension peaks aroundkBT/e52 and then starts
decreasing@34#. As one increasesT, there is a stronger mix
ing at the interface that introduces more of the weaker
interactions and raises the potential energy. This leads t
increase ing until at higher temperatures the entropy cont

FIG. 7. ~a! Order parameterF and ~b! densityr along thex
direction of the simulation box, and averaged over they and z
directions. The temperature isT51.1 ande*55. ~c! F vs r for
different interfaces withT51.1 and average density of 0.83~d!,
0.85 ~l!, 0.87 ~!!, 0.9 ~j!, and 0.925~m!.
02150
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bution brings it back down again@34#.
In addition to the surface tension, it is possible to defin

characteristic width to the interface. The interface profile
F from the molecular dynamics simulations@Fig. 7~a!# can
be fit to a tanh shape or equally well to an error functi
erf@(x2x0)/A2j2#. Similarly r can be fit to a constant mi
nus a Gaussian,A exp@(x2x0)

2/(2j2)#. The resulting widthsj
are shown in Fig. 9.

The stress profile through the interface also provides u
ful information. The surface tension is related to the str
through the kernel of Eq.~20!,

G~x![Pxx~x!2@Pyy~x!1Pzz~x!#/2. ~21!

We measure the local components of the stress tenso
rectly in the molecular dynamics simulations. A typical e
ample is shown in Fig. 10~a!. The variation ofG is also fit to
a Gaussian to obtain a width. As shown in Fig. 9, this wid
is smaller than those obtained from the interfacial profiles
the r andF. We will discuss this difference below.

FIG. 8. The surface tensiong for e*55 ~!! and 6 ~l! as a
function of ~a! average density atT51.1 and~b! temperature at
r50.85. Error bars represent systematic errors from^Pxx2(Pyy

1Pzz)/2& in the bulk regions. The dashed and solid lines in~a! are
the surface tension computed using the lattice Boltzmann me
for e*55 and 6, respectively, as discussed in Sec. V. The dotted
is the surface tension computed using the lattice Boltzmann me
with the Flory-Huggins free energy fore*56 discussed in Appen-
dix C.
5-8
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MAPPING MOLECULAR MODELS TO CONTINUUM . . . PHYSICAL REVIEW E69, 021505 ~2004!
FIG. 9. The interface width fore*56 as a function of average
density calculated from fits of the order parameterF profile to an
error function~l! and the density profile to a constant minus
Gaussian~!!. The width obtained from the stress profileG is also
shown~j!. Lines are only a guide to the eye.

FIG. 10. ~a! The interface stress differenceG(x)5Pxx(x)
2@Pyy(x)1Pzz(x)#/2 for a system with average densityr50.83
and e*56. ~b! The interface stress differenceG ~l! and square
gradient contributions KF(]xF)2 ~!!, Kr(]xr)2 ~h!, and
KrF(]xr)(]xF) ~m!. The elastic constants were taken from t
linear response data~the f8 fit was used forKF). Data are for a
system with average density 0.83 ande*56. Note that due to the
periodic boundary conditions there are two interfaces in the sys
giving two independent curves in~b!.
02150
The interfacial stress profile is also related to gradients
the density and order parameter. Substituting the expres
for the pressure tensor, Eq.~12!, into Eq. ~21! gives

G~x!5kBT@Kr~]xr!21KF~]xF!212KrF~]xr!~]xF!#.
~22!

The numerical derivatives are computed by first doing a lo
quadratic fit to the data~r or F! over a range of five to seve
points ~data were collected in bins with width 0.29s! and
then using the derivative of the local fitting function. Figu
10~b! shows the contributions from the various terms in E
~22!. As is evident from the figure, the only significant co
tribution to the interfacial stress comes from theKF(]xF)2

term. As a result, since the interface profile forF is well fit
by the error function erf@(x2x0)/A2j2# we would expect
the width obtained from a fit of the stress differenceG(x) to
a Gaussian to give a width 1/A2'0.71 of that from the fit to
F. The width we actually measure fromG(x) is about 0.9 of
that obtained fromF ~see Fig. 9!. That is, the stress profile i
wider than expected, a fact that is also obvious from F
10~b!. This may be due to a failure of the square gradie
theory or may be a result of interface fluctuations not
taken into account, namely capillary waves.

The widths measured in molecular dynamics simulatio
are not the intrinsic values but widths broadened by ther
fluctuations. Capillary waves result in the measured time
eraged widthj being larger than the intrinsic widthj0 by
@37#

j25j0
21

kBT

2pg
lnS L

D0
D , ~23!

whereD0 is a short scale cutoff.D0 is expected to be pro
portional to the intrinsic interface width~fluctuations on
length scales shorter than the interface width are not ca
lary waves!. We takeD0[cj0 wherej0 is the intrinsic width
of theF profile andc is a numerical constant. The bare wid
from theF profile is used forj0 since the width fromG is a
derived quantity in the square gradient theory. As all wid
in the problem are proportional to the intrinsic width of th
F profile, changing the width used in definingD0 will
changec but notD0 .

Following Ref. @37# we verify Eq. ~23! by plotting the
measured width as a function of system size. This is sho
in Fig. 11~a!. Fitting the data to the expressionj25ad
1bd lnL/s, we find thatbd5kBT/(2pg) to well within mea-
surement errors, as expected from Eq.~23!. The other param-
eter from the fit

ad5j0
22bd ln cj0 ~24!

could be used to obtainj0 if we knewc. Unfortunately this
fit alone does not provide enough information to indepe
dently determinec and j0 . Faced with this ambiguity, Ref
@37# arbitrarily chosec513, because it was the smalle
number where Eq.~24! had a solution for the range of chai
lengths studied: monomers to 30-mers. This is only a low
bound forc if c is independent of chain length. As we sha
now show, it is possible to determinec uniquely if informa-
,
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C. DENNISTON AND M. O. ROBBINS PHYSICAL REVIEW E69, 021505 ~2004!
tion from the stress profile is also used. Doing this, we fi
that c is actually much smaller than 13 for the monome
considered here.

If we assume that square gradient theory describes
interfaces, just as it works for linear response, then the va
of c can be obtained from the difference in the widths of t
G andF profiles. In the square gradient theory the intrins
widths should obey the relationjG0

2 5jF0

2 /2, wherejG0
is the

intrinsic width of G andjF0
the intrinsic width ofF. Based

on Eq.~23!, the measured widthsjF andjG of the F andG
profiles should be

jF
2 5jF0

2 1
kBT

2pg
lnS L

cjF0
D ,

jG
25

1

2
jF0

2 1
kBT

2pg
lnS L

cjF0
D . ~25!

FIG. 11. ~a! Dependence of the interfacial widths comput
from theF profile ~l!, r profile ~!!, andG ~j! as a function of the
system size parallel to the interface. The density is 0.85 ande*56
for all systems. Lines show linear fits to Eq.~23!. ~b! The intrinsic
interface width as a function of average density for the order
rameterF profile from molecular dynamics~l! and from lattice
Boltzmann~line!. ~c! Parameterc relating the short scale cutoffD0

to jF0
calculated using Eq.~25! ~l! and Eq.~24! ~h!. Data for

e*56 are shown but similar results are obtained fore*55.
02150
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Solving these equations simultaneously forc and jF0
gives

the result shown in Fig. 11~b!. Using Eq.~24!, we can also
computec from the finite size scaling if we use the intrins
widths obtained from Eq.~25!. The agreement seen betwee
these two methods in Fig. 11~c! gives weight to the assump
tion that square gradient theory describes the interfaces
curately.

We can also assess the consistency of the values ofKF

obtained from the linear response with estimates from in
face data. To do this, we assume capillary waves broaden
interface in a Gaussian manner~i.e., the measured shape o
the interface is a convolution of the intrinsic shape and
Gaussian distribution of widthAj22j0

2). If we further as-
sume thatKF is constant and that the intrinsic line shape f
F is reasonably approximated by an error function~which is
the case for the broadened shape directly measured!, then

F G~x50!

]xF~x50!G
MD

5kBTKF

jF
2

A2jGjF0

. ~26!

The quantity on the left is the directly measured~capillary
broadened! stress difference divided by the gradient ofF at
the point whereF crosses zero~center of the interface!. The
ratio of the length scales,jF

2 /(A2jGjF0
), is about 1.2160.05

for the interfaces measured. This gives a value ofKF of
(0.2960.03)s5/m2. As G ~and]xF) is peaked atF50 and
goes to zero asF→Fco this measure ofKF is dominated by
the value ofKF at F50. In the preceding section we dete
mined thatKF is essentially constant nearF50 and that
in this region it should have a value around 0.286
0.319s5/m2. Thus we can be reasonably happy that the e
tic constants determined from linear response are consis
with those obtained from the interfaces.

IV. FREE ENERGY PARAMETRIZATION

In order to use the information from the molecular d
namics simulations in a mesoscopic model, we also nee
parametrize the bulk free energy densityc. As we have di-
rect information aboutc and its various derivatives from th
interfacial stress and linear response data, this would no
first appear to be a difficult thing to do. However,c is a
function of bothr andF. The addition of the order param
eter means that expressions for obtaining the free ene
from the pressure found in standard references@18# are not
applicable. Figure 7~c! shows that as one goes through
interface,F can be reasonably approximated by a quadra
function of the local densityr. As a result, distinguishingc’s
dependence onF from that onr using interfacial data alone
is extremely difficult. Also, capillary waves change the sha
of the interfacial profiles so that getting information aboutc
directly from the interface shape can be misleading.
therefore use the linear response data to do the fits and
compare the resulting surface properties as a test of the
rametrization in Sec. V.

Before deciding on a particular functional form, it
worthwhile to examine what we would like to fit, and t
prioritize what is most/least important. Our fit priorities a

-
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MAPPING MOLECULAR MODELS TO CONTINUUM . . . PHYSICAL REVIEW E69, 021505 ~2004!
~1! phase diagram/coexistence line@Fco(r)#, ~2! linear re-
sponse of equilibrium phase~compressibility, etc.!, ~3! sur-
face tension,~4! interface widths. The rationale for thi
choice is fairly simple. Any model incapable of satisfying t
first item has little, if any, useful properties. A model capab
of reproducing the first two items will at least have a reas
able response to bulk forces. If a model fits the first th
items then it should reproduce most macroscopic interfa
behavior. If in addition the fourth item can be fit, then we c
reasonably expect it to describe a number of microsco
processes with macroscopic consequences, such as dr
coalescence or pinchoff.

There are a number of free energy functionals commo
used to study fluid mixtures. We found Flory-Huggins theo
has too few parameters to satisfy our first two requireme
while a Landau-Ginzburg expansion requires too many,
sulting in ambiguous fits. In this section we discuss an al
native parametrization and relegate discussions of Flo
Huggins theory to Appendix C.

To minimize degeneracies in the fitting procedure, we w
try to parametrize the free energy in terms of quantities t
are directly measured in the molecular dynamics simulatio
The partition function we use is a sum of Gaussians cente
at 6Fco plus a third Gaussian centered atF50 whose am-
plitude is chosen so as to partially cancel the overlap of
other two Gaussians. This results in the free energy den

kBTc5A02rkBT ln$exp@2A2~F2Fco!
2/~2rkBT!#

1exp@2A2~F1Fco!
2/~2rkBT!#

2exp@2A2~F21Fco
2 !/~rkBT!#%, ~27!

whereA0 , A2 , andFco are functions ofr to be determined.
As we will show, Eq.~27! reproduces the linear respon
data to within statistical errors essentially by constructi
For a single-phase system on the coexistence line, bu
from the critical point so thatFco@0, Eq.~27! simplifies to
a more familiar form

kBTc5A01 1
2 A2~F2Fco!

2.

The parameters of the free energy functional can be
termined directly from our molecular dynamics measu
ments of the equilibrium state. On the coexistence lineF
56Fco) one can easily show that

]2c

]r2
5

1

kBT

]2A0

]r2
1

]2c

]F2 S dFco

dr D 2

, ~28!

]2c

]r]F
52

]2c

]F2 S dFco

dr D , ~29!

]2c

]F2
5

A2

kBT F12expS 2
2A2Fco

2

rkBT D G . ~30!

For states whereFco is significantly greater than zero th
last expression reduces to]2c/]F25A2 . The equilibrium
hydrostatic pressure is
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p05r
]A0

]r
2A0 . ~31!

By rearranging these equations it is also straightforward
show that along the coexistence line

dp0

dr
5rkBTF ]2c

]r2
2

S ]2c

]r]F D 2

]2c

]F2

G5r
]2A0

]r2
, ~32!

dFco

dr
52

]2c

]r]F

]2c

]F2

. ~33!

To use Eq.~27! in the lattice Boltzmann algorithm, we
need to choose a functional form for the dependence of
parameters onr. As we have information about both value
and derivatives~of Fco for instance!, one could use a spline
fit to match the measured values exactly. Alternatively,
can pick a functional form for the parameters and fit the
over a range ofr. For A0 , a convenient form is

A05a01a1r ln~rs3/m!1a2r2. ~34!

Then from Eq.~31!,

p052a01a1r1a2r2 ~35!

and from Eq.~32!

1

r

dp0

dr U
co

5kTF ]2c

]r2
2

S ]2c

]r]F D 2

S ]2c

]F2D G5a1

1

r
12a2 . ~36!

A simultaneous fit ofp0 anddp0 /dr, weighted by the sta-
tistical errors from the measurements ofp0 and the second
derivatives used to obtaindp0 /dr, is shown in Fig. 12. The
values of the fit parameters are given in Table II.

Similarly, it is straightforward to do a fit ofFco to a
quadratic function taking into account the information abo
dFco /dr @Eq. ~33!#:

Fco5b01b1~r2r0!1b2~r2r0!2, ~37!

wherer050.85m/s3 is a reference density chosen so as
make the statistical errors in the fit parameters given in Ta
II independent. This fit is shown in Fig. 3. The parametriz
tion of the remaining quantity,A2 , is done in two steps
First, Eq. ~30! is numerically inverted to obtainA2 at each
point using the directly measuredFco and ]2c/]F2. The
resulting values are then fit to the function:
5-11
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C. DENNISTON AND M. O. ROBBINS PHYSICAL REVIEW E69, 021505 ~2004!
A25c0exp@c1~r2r0!#. ~38!

The fitted parameters are given in Table II and the resul
fit to ]2c/]F2 is shown in Fig. 5~c!. An exponential was
chosen to fitA2 rather than a quadratic or other polynom
for two reasons. First, it gave a better fit, and second,
quadratic did not remain monotonic over the full range
interest leading to unphysical effects when extrapolating o
side the range of densities where linear response was m
sured.

One could, in principle, add additional terms to the bu
free energy density that would haveno impact on the coex-
istence curve or the linear response data fitted so far. Su
term would be zero and have zero first and second der
tives on the coexistence line. If, in addition, it was peaked
f50 it would affect the surface tension and interface wid
As discussed in the following section, we do not need s
terms here but they may be useful in other contexts.

V. TESTS OF PARAMETRIZATION

To test the above parametrization’s description of int
face properties we make use of lattice Boltzmann simu

FIG. 12. Fits to~a! p0 and ~b! dp0 /dr which give the param-
etrization of A0 in Eq. ~34!. In ~a!, molecular dynamics data ar
shown fore*55 ~j! ande*56 ~l! and the solid and dashed line
correspond to the fits described in the main text. The dotted lin
~a! ~which overlaps with the solid line except at smallr! corre-
sponds to the fits used to determinec0 for the Flory-Huggins model
described in Appendix C fore*56. In ~b! only thee*56 data are
shown.
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tions. Lattice Boltzmann simulations were run for the sa
system size and compositions as the molecular dynam
simulations. We first verified that the lattice Boltzmann pr
gram correctly reproduced the bulk data. Surface tensi
were then computed from the integral of the stress differe
through the interface, Eq.~21!, just as we did for the molecu
lar dynamics simulations. Figure 8 shows the surface tens
computed from the lattice Boltzmann program using t
elastic constants andc parameters from Table II. While the
parametrization only used the linear response data, the
face tensions are very close to the molecular dynamics
sults, although they tend to be slightly higher. As discus
in Sec. III B, the interfacial properties are dominated by t
peak in the free energy and value of the elastic constants
f50. All the fits to the data were for values off.0.73, and
it is remarkable that an extrapolation tof50 works so well.

Due to capillary waves we cannot directly compare t
full interfacial profiles of the density and order parameter
the molecular dynamics. However, we can verify that t
total mass deficit at the interface is correct. This can be
culated from the integral under the dip in plots such as F
7~b! or from the increase in the density far from the interfa
that compensates for the dip. For example, consider a
lecular dynamics simulation where the total average sys
density is r50.85m/s3, kBT/e51.1, and with lengthLx
574.36s. We find that the density far from the interface,r
5(0.852660.0001)m/s3, is larger than the system averag
to make up for the deficit at the interface. A lattice Bolt
mann simulation with the same system size and total ave

in

TABLE II. Table of parameters for the free energyc in Eq. ~27!.
Parameters are defined in Eqs.~34!, ~37!, and~38!. As for the elastic
constants given in Table I, the data were measured for 0.82m/s3

,r,0.925m/s3 and care should be taken in extrapolating outs
of the measured range.

e* 5 6

a0 ~243.9265.72!
e

s3
~243.7865.8!

e

s3

a1 ~2113.8613.0!
e

m
~2114.0613.4!

e

m

a2 ~86.0467.42!
es3

m2
~86.3767.7!

es3

m2

b0 ~0.69560.004!
m

s3
~0.73960.003!

m

s3

b1 3.3760.15 2.6960.12

b2 ~212.061.6!
s3

m
~29.561.6!

s3

m

c0 ~2.01160.060!
es3

m2
~2.82760.007!

es3

m2

c1 ~20.4060.67!
s3

m
21.7060.09

s3

m
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MAPPING MOLECULAR MODELS TO CONTINUUM . . . PHYSICAL REVIEW E69, 021505 ~2004!
density shows exactly the same mass increase in the bu
Figure 11~a! shows that there is also reasonable agreem

between the intrinsic widths computed via the lattice Bol
mann and the molecular dynamics, although in this case
intrinsic widths measured from the lattice Boltzmann tend
be a bit smaller.

To test our model parametrization in a different geome
we examined a cylindrical drop. In three dimensions, a c
inder of fluid is unstable to spherical droplet formation. W
avoided this instability by making the radiusR of the droplet
bigger than the system size along the axis of the cylindey
axis!. Specifically,R524.5s, Ly516s, andLx andLz were
about 100s. For a density ofr50.85m/s3 this required
147 456 molecules and 107 time steps were needed to g
good statistics, which is reasonably large for a molecu
dynamics simulation. The only significant difference b
tween the molecular dynamics simulation and the latt
Boltzmann method is the presence of thermal noise. In
molecular dynamics simulation this causes the drop to
dergo Brownian motion. In order to do a meaningful co
parison we limited this effect by periodically shifting th
system so that the center of mass of the drop remainedx
5z50.

Figure 13 compares profiles of the order parame
through the center of the drop from molecular dynamics a
lattice Boltzmann simulations. The molecular dynamics p
file is broadened slightly by capillary waves and Browni
motion. Neither effect is present in the lattice Boltzma
simulation. The two methods both show thatF is lower by
0.01m/s3 than the equilibrium bulk value in the center of th
drop. The reason for the drop inF is that the interfacial
curvature produces a pressure differenceDp0 between the
inside and outside called the Laplace pressure. This also
creases the density in the drop. ForR524.5s the density
difference from lattice Boltzmann simulations
0.008 67m/s3, which agrees with the value of 0.00
60.002m/s3 from molecular dynamics. For a macroscop
cylinder, the pressure difference between the inside and
side of the drop should scale with the radius as@38#

FIG. 13. Order parameter profile on a cut going through
center of the drop. Note that the molecular dynamics profile
been smeared somewhat due to capillary waves and Brownian
tion of the drop that are not present in the lattice Boltzmann sim
lation.
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Dp05g/R, ~39!

where g is the surface tension measured in the molecu
dynamics simulation of a flat interface. As can be seen
Fig. 14, both the molecular dynamics simulation and the
tice Boltzmann results follow this relationship very well.

VI. MODEL COMPARISONS

In this section we compare our findings to three simplifi
models that are commonly used in mesoscale modeling
binary fluids. We first examine the common assumption
incompressibility, then consider what properties Flor
Huggins theory is capable of reproducing, and finally sh
that inconsistent parameter choices may be responsible
spurious velocities in lattice Boltzmann simulations.

Many models of simple and binary fluids assume that th
are incompressible. For bulk fluids, including those exa
ined here, this is a very reasonable assumption as]2c/]r2 is
very large compared to other second derivatives of the
energy~cf. Sec. III A!. However, due to the fact thatKr is
negative, the fluid can be very soft on the short length sca
characteristic of interface widths. This invalidates the
sumption of incompressibility in the interfacial region.

As noted in Sec. II B, the density drops in the interfac
region to reduce unfavorable 1-2 molecular interactions
hence the free energy. The quantitative impact of den
changes can be seen by considering the change in the
energy barrier@Eq. ~27!# in the interfacial region. Due to the
change in density in the interface, we find thatA2 drops
down to around 50% of its value in the bulk. This reducti
in A2 spreads the Gaussian functions in Eq.~27! thereby
reducing the barrier between the6Fco states. There is a
corresponding reduction in the total interfacial tension wh
is given by the integral ofG(x) through the interface@Eqs.
~20! and~21!#. Using the Euler-Lagrange equations@Eqs.~7!
and~8!# one can show thatG(x) is directly related to the free
energy barrier:G(x)5kBTc2A0 . Thus to see the impact o
density changes in the interface we can compare the inte

e
s
o-
-

FIG. 14. Laplace pressure between the inside and outside
cylindrical fluid ‘‘drop,’’ vs the curvature 1/R, whereR is the drop
radius. Results from lattice Boltzmann simulations~!! and molecu-
lar dynamics simulations~h! are consistent with each other an
with the straight line prediction from continuum theory, Eq.~39!.
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C. DENNISTON AND M. O. ROBBINS PHYSICAL REVIEW E69, 021505 ~2004!
of G(x) using theF profile from the lattice Boltzmann simu
lation combined with either ar-dependent value ofA2 or a
constant bulk value ofA2 . We find that including density
variations reduces the surface tension by a factor of 2
relative to incompressible models. Thus the density drop
the interface is not a negligible effect for any quantitati
study involving interfaces.

Practitioners of Flory-Huggins theory also commonly a
sume incompressibility, although it is not an intrinsic a
sumption of the theory. It is worthwhile to examine how we
Flory-Huggins theory can describe our molecular dynam
~MD! results if this assumption is relaxed. As mention
before, the Flory-Huggins theory has too few parameter
obtain a precise fit to both the coexistence curve and
linear response. As discussed in Appendix C, we can ob
the Flory-Hugginsx parameter from a fit to the coexistenc
curve shown in Fig. 3. The resulting linear response see
Fig. 5, while not in quantitative agreement with MD resul
should be adequate for qualitative work. The Flory-Hugg
prediction for the surface tensions seen in Fig. 8 is actu
remarkably good. It is important to note, however, that
have allowedx to vary with the local density. As a result,x
drops significantly in the interfacial region due to the inte
facial density drop. This reduces the surface tension b
large factor compared to incompressible models, just as
reduction inA2 discussed above did. As most implemen
tions of Flory-Huggins models for simulations assume
compressibility, such models will have surface tensions t
are a factor of 2–4 too large.

It is commonly found in lattice Boltzmann simulation
that a stationary droplet in quiescent conditions will deve
a flow field around it similar to that shown in Fig. 15~a!
@27,39#. It has recently been pointed out that these spuri
velocities arise due to discretization errors@39# which drive
the spurious currents. For our model, fitted to the molecu
dynamics data, we can estimate the truncation error from
discretization to be;1026 and the velocities seen at th
interface in Fig. 15~b! are indeed of this magnitude~in lattice
units!. The discretization error for the standard model fro
the literature used to produce Fig. 15~a! should also be
;1026 however the spurious velocities observed are ne
100 times greater. Further, the flow field for the stand
model includes considerable vorticity and significant flo
far from the interface itself. This suggests that discretizat
errors are driving an unstable~and possibly unphysical!
mode of the standard system leading to much larger spur
velocities. In our model, this mode is absent and discret
tion errors are not exaggerated.

One possible origin for unphysical modes in Fig. 15~a!
and similar models is related to the time scales used. In s
ations where the model parameters have not been meas
so that the length and time scales are uncertain, the visco
and diffusion constant may be set for convenience. Norm
this would not affect equilibrium properties, but if unphys
cal choices are made, unstable modes such as the ones
driven by the spurious velocities may be set up. For instan
unstable modes may appear if the diffusion constant is se
large that material can diffuse faster than it can flow.
ensure that this is not the case in our model, we have us
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viscosity and a diffusion constant that were measured in m
lecular dynamics simulations for similar fluids,h'3et/s
@40# andD50.1s2/t @15#.

VII. SUMMARY AND CONCLUSIONS

This paper presents detailed molecular dynamics sim
tion results for a binary mixture of simple fluids and us

FIG. 15. F field ~shading! and velocity field~vectors! for one
quadrant of a stationary cylindrical fluid ‘‘drop.’’ In~a!, a standard
model from the literature@27# was used and in~b!, the model we
have matched to the molecular dynamics data. In units wheredx
5dt51.0, the largest velocity vector is 1.231024 in ~a! and 1.5
31026 in ~b!. Note that the velocities in~b! would not be visible if
we had used the same scale as that used in~a!. The radius of the
drop in ~b! is slightly smaller but this should only increase spurio
velocities compared to~a!. In both ~a! and ~b! the lattice shown is
32 lattice spacings wide. The scale in the horizontal and veri
directions is equal.
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MAPPING MOLECULAR MODELS TO CONTINUUM . . . PHYSICAL REVIEW E69, 021505 ~2004!
them to construct a square gradient theory that can be
for realistic mesoscale modeling. The MD simulations exa
ine the linear response, interfacial tension, and interfa
width as a function of density, temperature, and the repuls
between different species. Two remarkable conclusions a
from the linear response results~Sec. III A!. The first is that
a square gradient theory is capable of quantitatively desc
ing the response down to wavelengths that are comparab
the molecular spacing~,2s!. This implies that mesoscal
models may have a much wider range of applicability th
might be expected. The second surprising result is that
elastic constant for density changes,Kr , is negative. As a
result, the system is more susceptible to fluctuations
shorter wavelengths. Indeed, it is only stabilized at sm
scales by atomic discreteness@32#. This prevents density
fluctuations on length scales less thans where the total re-
sponse coefficientLrr becomes negative.

Studies of interfacial properties~Sec. III B! show that the
common assumption of incompressibility is not valid. This
related to the observation thatKr,0, which lowers the free
energy cost of localized density fluctuations. Although t
density change is small, it can reduce the interfacial tens
by a factor of 2–4.

The density, order parameter, and surface stress w
evaluated as a function of position normal to the interfa
and used to determine interfacial widths. The variation
width with system size is consistent with broadening by th
mal capillary waves. Comparing the scaling of widths fro
the stress and order parameter allows all the paramete
the capillary model to be determined independently.

Fits to linear response about states on the coexiste
curve showed an impressive ability to predict interfac
properties. Predicted values of the surface tension~Fig. 8!
and the density deficit at the interface~Sec. V! are nearly
within the statistical error bars of the MD results. This
particularly surprising given the large change in order para
eter through the interface and small interface width~Fig. 9!.
The main discrepancy between the MD results and me
scale simulations is that the latter do not include interfa
broadening by capillary waves.

Many lattice Boltzmann~LB! models have been found t
produce spurious velocities around curved interfaces. W
some discretization error is expected, it appears that th
errors are amplified when the time scales in the LB mo
are chosen arbitrarily or for computational convenience.
ing time scales derived from MD simulations prevents u
physical choices that, for example, allow material to diffu
more rapidly than it flows. Figure 15 shows that using M
parameters can reduce spurious velocities by around t
orders of magnitude.

The final square gradient theory~Table II! has a simple
analytic form and provides an excellent fit to all MD resu
for phase coexistence, linear response, and interfacial p
erties over a wide range of densities. This is particula
important for future studies of nonequilibrium phenome
such as pinchoff or contact line motion. Dynamic proces
will lead to variations in local density and order parame
that will in turn lead to variations in local interfacial stres
These variations will have important implications for the d
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namics, producing Marangoni-like effects or changing t
wavelength dependent response of the interface. Our re
for the influence of density changes on interfacial tens
indicate that these effects may be quite large. While simp
theories~e.g., Appendix C! may be able to describe equilib
rium configurations, they do not include these important
pendences on local density. More complex theories that
not guided by MD results are unlikely to include importa
effects such as a negativeKr . It will be interesting to ex-
plore the dynamic consequences of such effects in fu
work.
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APPENDIX A: ELASTIC CONSTANT VARIATIONS

Frequently the free energy is parametrized as a functio
the individual species densitiesr1 and r2 . The free energy
can then be expressed as

F5kBTE dr H c1
1

2
K11~“r1!2

1
1

2
K22~“r2!21K12“r1•“r2J . ~A1!

The resulting elastic constants are linearly related to thos
Eq. ~3!: K115Kr1KF12KrF , K115Kr1KF22KrF , and
K125Kr2KF .

Another order parameter that is often used, the rela
concentration, isf5F/r. The free energy becomes

F5kBTE dr H c1
1

2
kr~“r!21

1

2
kf~“f!21krf“r•“fJ .

~A2!

These elastic constants have a more complex mappin
those in the main text,

Kr5kr1kfF2/r422krfF/r2, ~A3!

KF5kf /r2, ~A4!

KrF5krf /r2kfF/r3. ~A5!

It is obvious from these relations that theK ’s andk’s cannot
both be independent ofr or F. There can be advantages
using eitherf or F in different physical situations. It turns
out that for linear response measurements and for the la
Boltzmann algorithm it is convenient to work withF.

As the elastic constants can vary as a function ofF andr
this should, in principle, be taken into account in Eq.~8!. For
the elastic constants used in the main text, the full Eu
Lagrange equations are
5-15
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mr5
]c

]r
2Kr¹2r2KrF¹2F2

1

2

]Kr

]r
~“r!2

1F1

2

]KF

]r
2

]KrF

]F G~“F!22
]Kr

]F
“r•“F, ~A6!

mF5
]c

]F
2KF¹2F2KrF¹2r2

1

2

]KF

]F
~“F!2

1F1

2

]Kr

]F
2

]KrF

]r G~“r!22
]KF

]r
“F•“r. ~A7!

Clearly it would be desirable if some of these terms, es
cially those involving variations of the elastic constan
were negligible. For the linear response regime it is straig
forward to show that these additional terms are of orderd2

@cf. Eq. ~19!#. However, we must still investigate their im
portance for interfaces.

Figure 16 shows various contributions from gradients
the potentials of Eqs.~A6! and~A7! in a typical interface. As
can be seen, the terms that dominate have been kept in
~7! and ~8!. The remaining terms are quite small, or ess
tially zero, thus justifying ignoring them in the main tex
Note that some terms that are quite small in interfaces, s
as KrF¹2r in mF , are required when looking at the linea
response where“r and“F are of comparable magnitude.

FIG. 16. The individual gradient term contributions to the p
tentials~a! mF @Eq. ~A7!# and~b! mr @Eq. ~A6!# through two inter-
faces in a system at average densityr50.85 withe* 56. FormF ,

the termKF¹2F ~l! dominates,12 (]KF /]F)(“F)2 ~j! is small
but visibly different from zero, and1

2 (]Kr /]F)(“r)2 ~!!,
(]KrF /]r)(“r)2 ~h!, and (]KF /]r)“F•“r ~m! are effectively
zero.~b! For mr the significant terms areKr¹2r ~l!, KrF¹2F ~!!,
and (]KrF /]F)(“F)2 ~h!. The 1

2 (]KF /]r)(“F)2 ~m! term is
small but visibly different from zero. The other terms1

2 (]Kr /]r)
3(“r)2 ~j! and (]Kr /]F)“r•“F ~n! are effectively zero.
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APPENDIX B: IMPLEMENTATION OF LATTICE
BOLTZMANN

To compare the results of the lattice Boltzmann simu
tions to molecular dynamics, it is useful to compare the un
used in the simulations. In molecular dynamics we u
Lennard-Jones units, that is,m, s, and t. Time is discrete
with steps ofdt50.007t. The size of the time step is limited
by the requirement that molecular motion on the steep re
sive part of the intermolecular potential must be resolved
the lattice Boltzmann simulations a discretization of bo
spaceDx and timeDt is required. We will chooseDx's
primarily based on the requirement of resolving the interfa
width. One could, in principle, use a much coarser lattice
the bulk regions. Stability of our lattice Boltzmann schem
requires the lattice Mach number to be less than 1. Tha
the speed of sound

vs'A]p0 /]r,Dx/Dt. ~B1!

In Lennard-Jones unitsvs'A50s/t for e*55 ~see below! so
we takeDt50.1t so thatvs'0.7Dx/Dt.

As discussed in Sec. IV, the parameters determined f
molecular simulations turn out to be qualitatively differe
from those commonly used in lattice Boltzmann simulatio
As such, we had some problems with numerical stabi
using standard schemes. Stability was improved by using
predictor-corrector scheme@41#, rather than the standard Eu
ler scheme. Stability can be further enhanced by iterating
corrector step a few times. This was found to be helpful
the initial steps, especially if a particularly poor initial sta
was used. In addition, the method for discretization of d
rivative operators, particularly Laplacian operators, mad
significant difference. Including a mixture of derivative
along coordinate directions and those taken along the dia
nal direction improved stability.

To fully specify the model for the lattice Boltzmann algo
rithm, in addition to Eq.~12! for the pressure tensor, we nee
explicit expressions formF andp0 . These are derived and fi
in the main text but for reference we list the complete e
pressions here:

mF5
2A2

Z
@el~F1Fco!1er~F2Fco!22erelF#

2KF¹2F2KrF¹2r, ~B2!

p05r
]A0

]r
2A01

1

Z S r
dA2

dr
2A2D @el~F1Fco!

2

1er~F2Fco!
222erel~F21Fco

2 !#

1
2rA2

Z

dFco

dr
@el~F1Fco!2er~F2Fco!22erelF#

2rS Kr¹2r1KrF¹2F1
]KrF

]F
~“F!2D , ~B3!

where
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er5exp@2A2~F2Fco!
2/~2rkBT!#,

el5exp@2A2~F1Fco!
2/~2rkBT!#,

Z5er1el2erel . ~B4!

APPENDIX C: FITS TO FLORY-HUGGINS FREE ENERGY

There are a number of free energy functionals in comm
use to study fluid mixtures. For polymer mixtures, the Flo
Huggins free energy density is most commonly used.
monomers the free energy density divided bykBT is @13#

cFH5r1lnS r1

r D1r2lnS r2

r D1x
r1r2

r
, ~C1!

wherex is the only free parameter. This is just a modifi
entropy of mixing and, in order to obtain the bulk pressu
one must add to this an additional functionc0 of r alone,

c5c01cFH . ~C2!

If one were to follow the spirit of the derivation of the Flory
Huggins model,c0 should be determined primarily from th
entropy of an ideal gas plus some quadratic terms to cor
for energy interactions. In practice it is unrealistic to exp
such a construction to work. We shall use the same form
c0 as we used forA0 in Eq. ~34!. There is also some amb
guity in the definition of thex term in the Flory-Huggins free
energy. Some authors use a slightly different te
xr1r2 /(vr2), where v is a reference volume@42#. If we
allow x to be a function ofr then both terms are equivalen
but the meaning ofx will be slightly different.

We obtainx by fitting Fco anddFco /dr as a function of
r. In the bulk statesmF is zero and there are no gradients
that Eq.~8! requires that on the coexistence line

05
]c

]F
5

]cFH

]F
5

1

2
lnF11F/r

12F/rG2
1

2
x

F

r
. ~C3!

Equation~33! also holds, and if one evaluates these deri
tives for the Flory-Huggins free energy one can obtain
relation

S 1

11F/r
1

1

12F/r D S F

r
1

dFco

dr D
5xS F

r
1

dFco

dr D2F
]x

]r
, ~C4!

where dFco /dr is evaluated using Eq.~33! and the mea-
sured values of the second derivatives. If we takex to be a
quadratic function of density,

x5x01x1r1x2r2, ~C5!
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then we can do a simultaneous fit to these two equati
using a straightforward weighted linear regression@there
should not be any conflict between them as we are just fit
Fco(r) and the derivative of this functiondFco /dr]. The
weights are computed from the statistical errors of the m
surements ofFco and the second derivatives. We use sta
dard methods to find the statistical errors of the deriv
quantities. The resulting fits are shown in Fig. 17 and

FIG. 17. ~a! x parameter obtained from the fits toFco(r) ~Fig.
3! and ~b! dFco /dr. Solid and dotted lines correspond to fits fo
e*56 and 5, respectively. Molecular dynamics data in~b! are for
e*55 ~!! and 6~l!.

TABLE III. Table of parameters for the Flory-Huggins free e
ergy given in Eqs.~C1! and ~C2!. Parameters are defined in Eq
~34! and~C5!. As for the parameters given in the main text, the d
were measured for 0.82m/s3,r,0.925m/s3 and care should be
taken in extrapolating outside of the measured range.

e* 5 6

a0 ~231.5162.9!
e

s3
~226.5066.3!

e

s3

a1 ~292.3366.7!
e

m
~280.18614!

e

m

a2 ~77.063.8!
es3

m2
~69.768.3!

es3

m2

x0 10.1564.7 10.6865.0

x1 ~228.47610.4!
s3

m
~229.78611.21!

s3

m

x2 ~23.4265.7!
s6

m2
~24.5266.32!

s6

m2
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C. DENNISTON AND M. O. ROBBINS PHYSICAL REVIEW E69, 021505 ~2004!
parameters are given in Table III.
Next we fit the bulk pressurep0 to obtainc0 . Unlike the

fits of the equilibriump0 in the main text, which involved
only A0 , there is now a contribution from theF-dependent
terms in the free energy. In particular,

p05r
]c0

]r
2c01

1

4
kBT~r22F2!

]x

]r
. ~C6!

One could, in principle, also use the information abo
dp0 /dr that we used in fittingA0 for the single-phase free
energy. However, the additional terms make a combined
extremely messy and of dubious value. One still need
parametrization ofc0 in terms of r and we use the sam
functional form as was used forA0 ~although the numerica
values fora00, etc., will of course be different!. The result-
ing fit to p0 is shown as a dashed line in Fig. 12 and t
parameters are given in Table III.

As all parameters in the Flory-Huggins free energy
now determined, we can now compare the quantities not
plicitly used in the fits. Figure 5 shows the second deri
u.

ut

l,

l,

-

J

02150
t

fit
a

e
x-
-

tives of the bulk free energy as measured from linear
sponse in the molecular dynamics simulations and from
fits. The Flory-Huggins theory overestimates the concav
of the free energy minima. Figure 8 shows the surface t
sion derived from a lattice Boltzmann implementation of t
fit to the Flory-Huggins theory. The agreement is remarka
good. However, Flory-Huggins normally assumes inco
pressibility. If we had assumed that the density, and there
x, was constant, the surface tension would be much
large.

It is also worthwhile to compare the values ofx obtained
here to other methods of estimatingx. For long polymers at
r50.85m/s3, Grest and co-workers@13# have estimatedx
in two ways. Using a so-called one-fluid approximation, th
estimatex'0.76e* e/kBT. Using an incompressible random
phase approximation to evaluate the static structure fac
they obtain a larger value ofx'1.0e* e/kBT. Our results
correspond to a somewhat smaller value of ab
0.54e* e/kBT, which is not surprising given that we consid
simple monomers.
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